

1 2	CONGRESS OF NEUROLOGICAL SURGEONS SYSTEMATIC REVIEW AND
3	EVIDENCE-BASED GUIDELINE ON THE ROLE OF WHOLE BRAIN RADIATION
4	THERAPY IN ADULTS WITH NEWLY DIAGNOSED METASTATIC BRAIN
5	TUMORS
6	Sponsored by
7	The Congress of Neurological Surgeons and the Section on Tumors
8	Affirmation of Educational Benefit by
9	The Congress of Neurological Surgeons and the American Association of Neurological Surgeons
10	Laurie E. Gaspar MD, MBA ¹ , Roshan S. Prabhu MD, MS ² , Alia Hdeib MD ³ , D. Jay McCracken
11	MD ⁴ , George F. Lasker MD, PhD ⁵ , Michael W. McDermott MD ⁵ , Steven N. Kalkanis MD,
12	PhD ⁶ , Jeffrey J. Olson MD ⁴
13	1. Department of Radiation Oncology, University of Colorado Denver School of Medicine,
14	Aurora, Colorado, USA
15	2. Southeast Radiation Oncology Group and Levine Cancer Institute, Atrium Health, Charlotte,
16	North Carolina, USA
17	3. Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western
18	Reserve University, Cleveland, Ohio, USA
19	4. Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
20	5. Departments of Neurological Surgery, Radiation Oncology, Otolaryngology, University of
21	California San Francisco, San Francisco, California, USA
22	6. Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
23	Correspondence:
24	Laurie E. Gaspar MD, MBA
25	University of Colorado School of Medicine
26	Department of Radiation Oncology

- 27 Anschutz Cancer Pavilion
- 28 Campus Mail Stop: F-706
- 29 1665 Aurora Court, Suite 1032
- 30 Aurora, CO 80045
- 31 Telephone: (720) 848-0115; Fax: (720) 848-0222
- 32 E-mail: <u>laurie.gaspar@ucdenver.edu</u>
- 33 Keywords: Brain metastases, cerebral metastases, fractionation, histopathology, practice
- 34 guideline, radiotherapy, surgical resection, whole brain radiation therapy
- 35 Abbreviations
- 36 BED: Biological equivalent dose
- 37 BM: Brain metastases
- 38 EGFT: Epidermal growth factor receptor
- 39 HVLT: Hopkins Verbal Learning test
- 40 Gy: Gray
- 41 HA: Hippocampal avoidance
- 42 HER2: Human epidermal growth factor receptor 2
- 43 MMSE: Mini-mental status examination
- 44 NSCLC: Non-small cell lung cancer
- 45 PCI: Prophylactic cranial irradiation
- 46 QOL: Quality of life
- 47 RCT: Randomized controlled trial
- 48 RT: Radiation therapy
- 49 SCLC: Small cell lung cancer
- 50 SIB: Simultaneous integrated boost
- 51 SRS: Stereotactic radiosurgery
- 52 TKI: Tyrosine kinase inhibitors
- 53 WBRT: Whole brain radiation therapy
- 54 WHO PS: World Health Organization Performance Status
- 55 No part of this manuscript has been published or submitted for publication elsewhere.
- 56 ABSTRACT

Target population

Adult patients (older than 18 years of age) with newly diagnosed brain metastases.

Question

If whole brain radiation therapy (WBRT) is used, is there an optimal dose/fractionation schedule?

Recommendations

Level 1: A standard WBRT dose/fractionation schedule (i.e., 30 Gy in 10 fractions or a biological equivalent dose [BED] of 39 Gy₁₀) is recommended as altered dose/fractionation schedules do not result in significant differences in median survival or local control.

Level 3: Due to concerns regarding neurocognitive effects, higher dose per fraction schedules (such as 20 Gy in 5 fractions) are recommended only for patients with poor performance status or short predicted survival.

Level 3: WBRT can be recommended to improve progression-free survival for patients with >4 brain metastases.

Question

What impact does tumor histopathology or molecular status have on the decision to use WBRT, the dose fractionation scheme to be utilized, and its outcomes?

Recommendations

There is insufficient evidence to support the choice of any particular dose/fractionation regimen based on histopathology. Molecular status may have an impact on the decision to delay WBRT in subgroups of patients, but there are not sufficient data to make a more definitive recommendation.

Question

Separate from survival outcomes, what are the neurocognitive consequences of WBRT, and what steps can be taken to minimize them?

Recommendations

Level 2: Due to neurocognitive toxicity, local therapy (surgery or stereotactice radiosurgery [SRS]) without WBRT is recommended for patients with \leq 4 brain metastases amenable to local therapy in terms of size and location.

Level 2: Given the association of neurocognitive toxicity with increasing total dose and dose per fraction of WBRT, WBRT doses >30 Gy given in 10 fractions, or similar biologically equivalent doses, are not recommended, except in patients with poor performance status or short predicted survival.

Level 2: If prophylactic cranial irradiation (PCI) is given to prevent brain metastases for small cell lung cancer, the recommended WBRT dose/fractionation regimen is 25 Gy in 10 fractions, and because this can be associated with neurocognitive decline, patients should be told of this risk at the same time they are counseled about the possible survival benefits.

Level 3: Patients having WBRT (given for either existing brain metastases or as PCI) should be offered 6 months of memantine to potentially delay, lessen, or prevent the associated neurocognitive toxicity.

Question

Does the addition of WBRT after surgical resection or radiosurgery improve progression-free or overall survival outcomes when compared with surgical resection or radiosurgery alone?

Recommendations

Level 2: WBRT is not recommended in World Health Organization (WHO) performance status 0-2 patients with up to 4 brain metastases because, compared with surgical resection or radiosurgery alone, the addition of WBRT improves intracranial progression-free survival but not overall survival.

Level 2: In WHO performance status 0-2 patients with up to 4 brain metastases where the goal is minimizing neurocognitive toxicity, as opposed to maximizing progression-free survival and overall survival, local therapy (surgery or radiosurgery) without WBRT is recommended.

Level 3: Compared with surgical resection or radiosurgery alone, the addition of WBRT is not recommended for patients with more than 4 brain metastases unless the metastases' volume exceeds 7 cc, or there are >15 metastases, or the size or location of the metastases are not amenable to surgical resection or radiosurgery.

57 INTRODUCTION

58 *Rationale*

59 Whole brain radiation therapy (WBRT) has long been a standard treatment for patients with

60 brain metastases. Based on preclinical and observational data, some physicians alter dose

61 fractionation or withhold WBRT, based on tumor histology. Concern has also been expressed by

62 clinicians regarding the neurocognitive effects of WBRT, particularly if the metastases are

63 amenable to surgical resection or stereotactic radiosurgery (SRS).

64

This guideline is based on a systematic review of the evidence available for WBRT dose

66 fractionation regimens and the impact of tumor histopathology on treatment outcomes when

67 WBRT is used for newly diagnosed brain metastases. Due to concerns about neurocognitive

toxicity from WBRT, this guideline also reviews the evidence for pharmacologic or technical

69 maneuvers to reduce this toxicity. In addition, this guideline analyzes the data regarding survival

70 outcomes following local therapy with surgical resection or SRS.

71 *Objectives*

72 This guideline will systematically review the evidence available for altered WBRT dose 73 fractionation and the impact of tumor histopathology on treatment outcomes when WBRT is 74 used. The neurocognitive effects of WBRT, and the strategies for reducing these effects, are 75 addressed. In addition, this guideline will also systematically review the evidence for the use of 76 surgical resection plus WBRT compared with WBRT alone in patients with newly diagnosed, 77 surgically accessible, single brain metastases. The studies identified through this process will be 78 used to make evidence-based recommendations for the role of WBRT in the management of patients with newly diagnosed brain metastases. 79

80 METHODS

81 Writing Group and Question Establishment

The writing group was established by the nominating section and Task Force Chair. The writing group jointly developed the 4 questions relevant to WBRT in the current era. The 4 questions were each assigned to a primary writer. To answer the questions, a comprehensive systematic literature review was performed. Two writers evaluated citations found by the search using *a priori* criteria for relevance and documented decisions in standardized forms. Cases of

- 87 disagreement were resolved by a third reviewer. The same methodology was used for full-text
- screening of potentially relevant papers. Studies that met the eligibility criteria were data
- 89 extracted by one reviewer and the extracted information was checked by a second reviewer.

90 Literature Review

- 91 To update questions raised in the prior guidelines, PubMed, Embase, and Cochrane CENTRAL
- databases were searched for the period from January 1, 2008, to December 31, 2015. For the
- new question regarding neurocognitive effects, the search extended between January 1, 1990,
- through December 31, 2015. A broad search strategy using a combination of controlled
- 95 vocabulary and text words was employed. The search strategies for each database are
- 96 documented in Table 1.

97 Article Inclusion and Exclusion Criteria

98 For new literature to be included for consideration, studies published in full as peer review

- 99 papers had to meet the following criteria:
- Be published in English with a publication date within the periods described above.
- Involve patients with newly diagnosed parenchymal brain metastases.
- Involve adult patients (>18 years of age).
- Fully-published peer-reviewed articles.
- Use of WBRT after diagnosis of brain metastases has been made.
- 105 Study Selection and Quality Assessment

After an extensive search, 1823 articles were found. The duplicates from the searches in different 106 databases were eliminated. By reviewing the titles and/or abstracts, we excluded all articles 107 108 referring to leptomeningeal metastases, those discussing exclusively surgery, chemotherapy or radiosurgery and citations that only referred to patients <18 years of age. We also excluded 109 publications that discussed exclusively WBRT for treatment of recurrent/progressive brain 110 metastases, and all articles discussing experimental therapy in animal tumor models. The 111 remaining 172 articles underwent full-text review. Only 61 articles met all of the inclusion 112 criteria and were considered in formulating these evidence-based clinical guidelines. The 113 114 remaining 111 articles that underwent full-text review were excluded for the following reasons: the results were not presented according to treatment type, the study eligibility or reasons for 115

treatment assignment were not clear, a lack of subgroup analysis by histology or molecular

- status, the paper was a review, systematic review, letter, or editorial, the study contained too few
- 118 patients, or the study included a radiographic or non-neurocognitive endpoint.

119 Evidence Classification and Recommendation Levels

- Both the quality of the evidence and the eventual strength of the recommendations generated by
- this evidence were graded according to a 3-tiered system for assessing studies addressing
- 122 diagnostic testing as approved by the American Association of Neurological Surgeons (AANS)/
- 123 Congress of Neurological Surgeons (CNS) Joint Guidelines Review Committee on criteria
- 124 (https://www.cns.org/guidelines/guideline-procedures-policies/guideline-development-
- 125 <u>methodology</u>).

126 Assessment for Risk of Bias

127 A list of article titles and abstracts was produced by the search, using the search strategies

- 128 presented in Table 1. To avoid bias due to selective choice of articles, the decision to review and
- 129 utilize the full article was made by at least 2 authors. The authors of this guideline represent
- 130 multiple specialties. The decision to classify a study as Class I, II, or III was first made by the
- 131 primary author of each of the 4 questions, and then reviewed by at least 1 other author. The
- strength of the recommendation was also proposed by the primary author and then discussed and
- 133 modified by all authors.

134 **RESULTS**

135 If WBRT is used, is there an optimal dose/fractionation schedule?

136 In the 2010 guideline, 17 studies met the eligibility criteria for this question.¹ These unique

- studies fell into 3 evidence class categories as follows: 9 randomized controlled trials (RCT)
- 138 Class I studies²⁻¹⁰ and 1 Class II randomized phase I/II trial,¹¹ 7 other Class II studies¹²⁻¹⁷
- 139 (retrospective cohort studies), and 1 Class III study¹⁸ (prospective cohort study with historical
- 140 controls). Since 2008, there have been 3 additional studies that met eligibility criteria: 1 Class I
- study¹⁹ and 2 Class III studies.^{20, 21} Table 2 summarizes the 14 RCT studies from the old and new
- 142 guidelines that informed the recommendations.
- 143
- 144 Expressing radiation dosages in terms of the biological equivalent dose (BED) takes into account
- the total dose of radiation, fraction size, and overall time to deliver the radiation, and presumed
- repair of irradiated tissue.^{22, 23} The 2010 guidelines found no meaningful improvement in any
- 147 endpoint relative to dose or BED; specifically, survival was not improved. In addition, no dose-

effect was identified for quality of life (QOL) or neurologic function. Given the paucity of Class
I studies published since the 2010 guidelines, these BED analyses were not updated.

150

Despite previously published phase III studies (all Class I studies) finding no disadvantage to very short, accelerated treatments, there have been few recent studies evaluating this further.^{2, 6,} ¹⁰ One recent phase II study of short accelerated radiation therapy (RT), such as 18 Gy given in 4.5 Gy fractions twice daily for 2 days, concluded that this treatment was effective in terms of symptom relief (63%) and median survival time (7 months), but agreed that further phase III studies were required.²⁴

157

One of the evolving techniques of WBRT is to use a simultaneous integrated boost (SIB).^{25, 26} 158 The decision to do a SIB may be based on the size of the brain metastases or histology of the 159 primary cancer.²⁷ Rodrigues et al ²⁵ reported on such a technique for 120 patients with 160 oligometastatic brain metastases (< 7 lesions with cumulative volume < 30 cc) treated at 2 161 162 centers between 2005 and 2010. Using an arc-based image-guided system, patients received 20 163 Gy in 5 fractions WBRT while simultaneously receiving 40 Gy in 5 fractions to the oligometastases. With a median follow-up of 4.7 months, 23% of deceased patients died of 164 intracranial disease. The median survival time was 5.9 months. As in other WBRT studies, poor 165 performance status, lung cancer histology, and the presence of systemic disease were identified 166 167 as poor prognostic factors. A phase II study comparing this technique to traditional SRS 168 techniques is ongoing in Canada (NCT01543542).

169

In summary, a standard WBRT dose/fractionation schedule (i.e., 30 Gy in 10 fractions or a BED 170 171 of 39 Gy₁₀) is recommended because altered dose/fractionation schedules do not result in significant differences in median survival or local control. However, due to concerns regarding 172 173 neurocognitive effects, higher dose per fraction schedules (such as 20 Gy in 5 fractions) are recommended only for patients with poor performance status or short predicted survival. The 174 175 more difficult issue is when to recommend WBRT. As seen throughout the following questions, 176 the role of WBRT has declined, because more patients are treated with local therapies (radiosurgery or surgery) or supportive care. Studies of local therapy with or without WBRT 177 have only been conducted in patients with <4 brain metastases.²⁸ This lead to the Level 3 178

- recommendation of WBRT to reduce progression-free survival for patients with >4 brain
- 180 metastases. The use of systemic therapy only is addressed more thoroughly in other chapters.
- 181

What impact does tumor histopathology or molecular status have on the decision to use WBRT, the dose fractionation scheme to be utilized, and its outcomes?

In the 2010 guidelines, only 1 paper met the eligibility criteria for this slightly modified
question.²⁹ The question was reworded in this guideline to address the issue of timing of WBRT
relative to systemic therapy. This updated literature search identified 3 additional papers, all
Class II or III.³⁰⁻³² In addition, an older Radiation Therapy Oncology Group (RTOG) Class I
study primarily asking a question regarding dose/fractionation was considered because it

- stratified patients according to site of primary cancer (lung vs breast vs other).³³
- 190

Borgelt et al,³³ in a Class II study, concluded that the results of WBRT were no different between 191 3 histopathology groups: lung, breast, or "other." No regimen was shown to be superior over 192 another regimen according to these histopathology groups. However, a later retrospective 193 analysis of RTOG and multi-institutional data has uncovered diagnosis (histology) specific 194 prognostic factors.³⁴ This retrospective analysis of 3940 patients with newly diagnosed brain 195 196 metastases led to the Graded Prognostic Assessment Index that can be used to estimate survival for patients with brain metastases from non-small cell lung cancer (NSCLC), small cell lung 197 cancer (SCLC), melanoma, renal cell cancer, breast cancer, or gastrointestinal cancers. Because 198 these patients had undergone a variety of treatments, including WBRT, SRS, surgery, and 199 200 various combinations, the authors were careful to conclude that although histology may influence prognosis, there were insufficient data to predict the relative benefits of one treatment 201 202 over another.

203

Lung cancer has been identified in several studies to have a different outcome when treated with
WBRT than other histologies. In RTOG 9508, patients with 1 to 3 newly diagnosed brain
metastases were randomized to receive either WBRT or WBRT followed by a SRS boost.³⁵ The
primary study outcome was overall survival, and secondary outcomes were tumor response, local
control rates, overall intracranial recurrence rates, cause of death, and performance
measurements. No difference between WBRT alone versus WBRT followed by SRS was found

in these primary or secondary endpoints for the study group at large. However, a subset analysis

found improved survival, which reached statistical significance in multivariate analysis, for

patients who received the combination of WBRT and SRS, as opposed to WBRT alone, in

- squamous cell and non-small-cell histology, which is usually seen in patients with lung cancer.
- 214

The molecular analysis of lung cancer has also brought about significant changes in the approach 215 216 to brain metastases with either epidermal growth factor receptor (EGFR) mutations or echinoderm microtubule-associated protein-like 4/anaplastic lymphoma kinase (ALK) 217 rearrangements.^{36, 37} Two small institutional retrospective Class III case series of patients with 218 lung cancer brain metastases treated with WBRT attempted to determine the impact of EGFR 219 220 mutation in treatment outcome.^{30, 31} Both studies found that an EGFR mutation was predictive for improved treatment response following WBRT. Gow et al³¹ also concluded from a small 221 retrospective study that the addition of a tyrosine-kinase inhibitor to WBRT was independently 222 associated with improved treatment response in EGFR-mutated patients. Small retrospective 223 studies in EGFR-mutated lung cancer patients have found that first-line tyrosine kinase inhibitors 224 225 (TKI) without WBRT are associated with response or stability in brain metastases, but that intracranial progression requiring WBRT occurs in most patients.³⁸ Despite the controversy 226 227 regarding treatment for this subset of lung cancer patients, there are no ongoing phase III studies comparing WBRT to TKIs in EGFR-mutated or echinoderm microtubule-associated protein-like 228 229 4/anaplastic lymphoma kinase rearranged patients.

230

231 Molecular analyses in patients with breast cancer have also uncovered the importance of human epidermal growth factor receptor 2 (HER2) status on the outcome of patients with breast cancer 232 brain metastases undergoing WBRT. In a class III study, Wolstenholme et al³² reported the 233 results of WBRT observed in 88 HER2-positive patients and 93 HER2-negative patients, with 234 heterogeneous chemotherapy regimens, including trastuzumab treatment in 53 of the 88 HER2-235 positive patients. Twelve patients also received additional SRS. The study concluded that an 236 237 improved median survival following WBRT was associated with HER2-positive status. However, the results were confounded by the observation that HER2-positive patients may have 238 had more aggressive treatment for their brain metastases. 239

241 Though this systematic review of the literature was limited in terms of higher class data that

specifically addressed the question of the impact of histopathology/molecular status on treatment

outcomes following WBRT, it appears that the use of WBRT has waned, particularly in certain

primary histologies. For example, several retrospective Class III case series have concluded that

SRS alone for melanoma brain metastases, even if numerous, is associated with a reasonable

outcome.³⁹⁻⁴¹ Prospective studies are needed, and a randomized prospective trial investigating the

role of WBRT in melanoma brain metastases is reported to be underway.⁴²

248

In summary, there is insufficient evidence to support the choice of any particular

250 dose/fractionation regimen based on histopathology. Molecular status may have an impact on

the decision to delay WBRT in subgroups of patients but there are not sufficient data to make a

252 more definitive recommendation. The role of WBRT, as opposed to SRS alone, is also

controversial in many histologies, but particularly for patients with melanoma. RCTs that are

histology- or molecular status-specific are necessary to resolve many of these issues.

255 What are the neurocognitive consequences of WBRT, and what steps can be taken to

256 minimize it?

This is a new question since the prior guidelines were published, reflecting the growing concern about the neurocognitive effects of WBRT. The effects of WBRT on neurocognitive functions can be subdivided into whether or not patients have demonstrable brain metastases at the time of WBRT, or whether WBRT is being used for prophylactic cranial irradiation (PCI). Six studies of the neurocognitive effects of WBRT in the PCI setting for SCLC are summarized in Table 4.⁴³⁻⁴⁸ These studies primarily included patients with SCLC histology, although Sun et al⁴⁵ reported on the neurocognitive outcome of PCI in patients with NSCLC.

264

An early phase III trial by Arriagada et al.⁴⁸ reported neurocognition as a secondary endpoint for patients with limited stage SCLC. There was no difference found in the 2-year cumulative incidence of negative change in cognitive "higher functions" (36% if no PCI, vs 30% with PCI, p = NS). This study was given a Class II designation due to the lack of definition for "higher functions" testing, or criteria used to define decline in testing. Gregor et al.⁴⁷ also found no difference in neurocognition at 6 months or 1 year following PCI. This RCT was given a Class II designation for several reasons: neurocognition was only a secondary endpoint, and 272 neurocognitive baseline testing was available in only 40% of patients, leading to potential issues of selection bias and small patient numbers. Slotman et al.⁴⁶ reported neurocognition within a 273 274 phase III RCT for patients with extensive stage SCLC. There was no statistical difference in worsened cognitive functioning at 3 months (PCI: 22.4% versus no PCI: 10%, p = NS). This 275 276 study had a large number of patients treated with a PCI dose/fractionation scheme not as frequently used in the United States (20 Gy in 5 fractions). Another limitation was that the 277 278 neurocognitive endpoint was taken from a subset of primarily QOL questionnaires. Sun et al.⁴⁵ reported the neurocognitive outcomes in an RCT of PCI or no PCI for NSCLC histology. 279 Patients in the PCI arm had a significant deterioration in memory, measured by the Hopkins 280 Verbal Learning Test-Revised (HVLT-R), at 1 year. However, there was no difference found in 281 global cognition measured by the Mini-Mental Status Examination (MMSE) or QOL between 282 arms. This study represents Class I data due to a relatively large patient population, intact 283 randomization, and the use of more sensitive neurocognitive testing. 284 285

Two studies investigated the cognitive effect of various PCI dose/fractionation regimens for 286 patients with PCI.^{43, 44} Le Pechoux et al⁴⁴ found no significant difference in neurocognitive 287 outcomes between 36 Gy and 25 Gy PCI. However, Wolfson et al⁴³ reported secondary 288 endpoints of a large randomized phase II trial using a modern battery of neurocognitive 289 assessments and reported a significantly higher rate of neurocognitive decline with 36 Gy versus 290 291 25 Gy at 12-months (85 - 89% vs 60%, p = 0.02). Increasing age was also a significant predictive factor for neurocognitive decline. Thus, the class II evidence from the Wolfson et al⁴³ 292 study allows one to infer that WBRT doses exceeding 30 Gy in 10 fractions (or similar BEDs) 293 are associated with greater likelihood of neurological decline. 294

295

Three studies summarized in Table 5 met inclusion criteria for tracking neurocognitive outcome following local brain therapy (primarily SRS) versus local brain therapy and WBRT for patients with known brain metastases.⁴⁹⁻⁵¹ Chang et al⁵⁰ randomized patients with 1 to 3 brain metastases to SRS alone versus SRS and WBRT. A sensitive battery of neurocognitive assessments was utilized with neurocognition as the study's primary endpoint. The study showed significantly higher rates of deterioration in recall at 4 months with the addition of WBRT (SRS + WBRT: 52% vs SRS: 24%, p(A > B) 96%). Another study by Aoyama et al⁴⁹ randomized patients with 1 to 4 brain metastases to SRS versus SRS and WBRT, and used the MMSE as a measure of global cognition. This study found no difference in MMSE preservation rates between arms at both 12 and 24 months. In fact, they showed that intracranial tumor control was the most important factor in cognitive preservation. In a more recent study, Brown et al⁵² similarly showed that the addition of WBRT to SRS was associated with significantly higher rates of cognitive decline and memory decline at 3 months (SRS + WBRT 92% vs SRS 64%, p<0.001).

309

Soffietti et al⁵¹ reported the secondary cognitive outcome of local therapy (SRS or surgery) with
or without WBRT in an RCT by the European Organisation for Research and Treatment of
Cancer (EORTC). The authors reported that WBRT was associated with significantly more
decline in 12-month cognitive functioning than local therapy alone. This trial was graded as
Class II due to the use of primarily QOL questionnaires to measure cognition and the mixing of
post-surgical and SRS local therapy patients into a single group.

316

Four studies summarized in Table 6 met the inclusion criteria for medications or radiation 317 techniques evaluated for their efficacy in minimizing the neurocognitive effects of WBRT for 318 patients with known brain metastases.⁵³⁻⁵⁶ Three of these trials investigated the use of 319 medications to mitigate the neurocognitive effects of RT in patients with known brain metastases 320 or primary brain tumors.^{54, 55, 56} Butler et al⁵⁵ reported an RCT of methylphenidate versus 321 322 placebo, with approximately 50% of patients having metastatic brain tumors. MMSE was used as the primary measure of cognition. There were no differences in MMSE scores between arms <8 323 weeks post-radiation. Brown et al⁵⁶ reported a phase III RCT of memantine versus placebo in 324 patients with brain metastases treated with WBRT. There was no significant difference in the 325 326 decline of delayed recall (the primary endpoint) in the memantine arm compared with the placebo arm. However, time to cognitive failure, defined as the first cognitive failure on any of 327 328 the neurocognitive tests, was found to significantly favor the memantine arm (hazard ratio, 0.78, p=0.01). Rapp et al⁵³ reported a phase III trial of donepezil versus placebo for patients with 329 330 metastatic or primary brain tumors status post-completion of partial brain RT or WBRT. Patients in both groups showed improved cognitive function at 24 weeks, but there was no significant 331 difference in overall cognitive composite score between the donepezil and placebo arms 332 333 (p=0.48). However, several specific cognitive functions, such as immediate and delayed recall,

did show improvement, and patients with greater baseline impairment were more likely to havethe greatest benefit from donepezil.

336

Gondi et al⁵⁴ reported a single arm phase II trial of hippocampal avoidance WBRT (HA-WBRT).
The results of this trial were compared with a historical control of conventional WBRT. HAWBRT was associated with a lower rate of decline in delayed recall at 4 months, 7% with HAWBRT as opposed to 30% in historical control, p=0.0003.

341

In summary, there is evidence that the addition of WBRT to local therapy (primarily SRS) is 342 associated with increased risk of significant neurocognitive decline in patients with brain 343 metastases. This decline is apparent as early as 3 months post-WBRT and can persist in long-344 term survivors. This supports a Level 2 recommendation that local therapy (surgery or SRS) 345 without additional WBRT is recommended for patients with <4 brain metastases that are 346 amenable to local therapy in terms of size and location. The evidence also supports a Level 2 347 recommendation that WBRT doses not exceed 30 Gy given in 10 fractions, or similar BEDs 348 349 except in patients with poor performance status or short predicted survival. WBRT given as PCI also has detrimental effects on neurocognition, although these detrimental effects have to be 350 weighed against the small survival benefit of PCI.⁵⁷ There is evidence that higher doses of PCI 351 are associated with higher levels of neurocognitive detriment, particularly in older patients.^{43, 44} 352 353 This supports the Level 2 recommendation that the recommended PCI WBRT dose/fractionation regimen is 25 Gy in 10 fractions, and because this can be associated with neurocognitive decline, 354 355 patients should be told of this risk at the same time they are counseled about the possible survival benefits. 356

357

There is Class I evidence that memantine has a nonsignificant trend towards neurocognitive protection in patients with brain metastases undergoing WBRT. This supports the Level 3 recommendation to place patients having WBRT (given for either existing brain metastases or as PCI) on 6 months of memantine to potentially delay, lessen, or prevent the associated neurocognitive toxicity. The evidence for donepezil is moderate, and there is insufficient evidence that methylphenidate is beneficial. There is additional evidence suggesting that HA WBRT may significantly reduce the risk of neurocognitive decline compared with conventional WBRT. There are ongoing RCTs of WBRT with or without HA for patients with either knownbrain metastases or receiving WBRT in the PCI setting.

367

368Does the addition of WBRT after surgical resection or radiosurgery improve progression-369free or overall survival outcomes when compared with surgical resection or radiosurgery

370 **alone**?

371 This is a new question raised since the publication of the 2010 guidelines in which there was insufficient evidence to address the value of WBRT following SRS.¹ The previous guidelines 372 only addressed surgical resection and WBRT, or WBRT alone. In this guideline, the authors 373 have expanded the scope of treatment and have the results of studies of local therapy, including 374 either surgery or SRS, with or without WBRT. Prospective RCTs addressing this issue are 375 summarized in Table 7.28, 59, 59 Sahgal et al⁶⁰ published a 2015 meta-analysis evaluating SRS and 376 WBRT compared with SRS alone. While this study was not included in our data table as primary 377 evidence, conclusions gleaned from this study are relevant to this review. Since an earlier 378 question addressed the neurocognitive outcomes of WBRT, this question addresses progression-379 380 free or overall survival outcomes.

381

The first large-scale, prospective RCT demonstrating the efficacy of WBRT following 382 neurosurgical resection of a single solitary BM was reported by Patchell et al⁵⁸ in 1998. The 383 384 primary endpoint was intracranial disease control. Improved local control and cumulative intracranial control were observed in patients who received postoperative WBRT when 385 386 compared with patients who did not receive the adjuvant therapy. Local tumor recurrence in the resection cavity, as well as distant intracranial metastatic disease, was reduced in the patients 387 388 who received WBRT, as opposed to those who did not. There was also a significant decrease in the incidence of death resulting from neurological sequelae in patients who received WBRT. 389 390 Although there was no significant difference found between the adjuvant WBRT versus observation groups in terms of overall survival or length of functional independence, the primary 391 392 endpoint measured in this study was metastatic recurrence in the brain, and the sample sizes were 393 likely underpowered for these analyses.

394

An RCT published in 2006 by Aoyama et al⁵⁹ (JROSG99-1) randomized 132 patients with 1 to 4

396 brain metastases, each <3 cm in diameter, to receive either SRS alone or SRS and WBRT. The 397 primary endpoint was overall survival, but secondary outcomes included local recurrence, rate of 398 salvage brain treatment, functional preservation, toxic effects, and cause of death. In the SRS only group, median survival time and the 1-year actuarial survival rate were not significantly 399 400 different from the SRS and WBRT group. Intracranial recurrence rate at 1 year was higher in the SRS group than the SRS and WBRT group (76.4% vs 46.8%, p<0.001). Salvage brain treatment 401 was significantly higher in the SRS alone group; however, the incidence of neurologic-related 402 deaths was not statistically significant. The authors concluded that the addition of WBRT to 403 SRS therapy improved local and intracranial control but did not improve overall survival. 404

405

The EORTC 22952-26001 trial, as described by Kocher et al²⁸ in 2011, randomized 359 patients, 406 WHO performance status of 0-2, who had received local therapy (either SRS or surgical 407 resection of <3 brain metastases) to either the local therapy only or local therapy followed by 408 WBRT. The primary endpoint was time to decline to WHO Performance Status (WHO PS) > 2. 409 Secondary endpoints included frequency and location of intracranial relapse, progression-free 410 411 survival, and overall survival. The investigators reported that within the surgical subgroup, adjuvant WBRT reduced the probability of both local and distal relapse to new intracranial sites 412 when compared to patients who did not receive WBRT (59% to 27%, p<0.001 and 42% to 413 23%, p=0.008, respectively). In the pooled analyses of surgery and SRS, the median time to 414 415 WHO PS > 2 was 10.0 months in the local therapy only arm and 9.5 months in the local therapy and WBRT arm (p=0.71). In a multivariate analysis, the only factors significantly impacting 416 417 WHO PS outcomes were the baseline WHO PS (0 vs 2, p=0.004) and the presence of macroscopic tumor outside the brain (absent vs present, p<0.001). Median progression-free 418 419 survival was not significantly longer in the WBRT arm when compared with the observation arm (4.6 months vs 3.9 months, p=0.20). Overall survival was similar between the two arms. Death 420 421 resulting from neurologic sequelae was significantly greater in the local therapy arm. Systemic disease progression was the most common cause of death in both arms of the study. The results 422 423 from this RCT provide further evidence that WBRT is an effective modality to decrease intracranial metastatic recurrence and neurologic death, but this does not translate to an improved 424 duration of functional independence or overall survival. The investigators concluded that in well-425

426 performing patients with stable systemic disease and ≤ 3 brain metastases, WBRT could be 427 withheld if serial imaging is performed.

428

The North Central Cancer Treatment Group Alliance N0574 Trial was reported by Brown et al⁵² 429 430 in 2016, falling outside the reference search window, and therefore was not utilized when forming the recommendations.⁵² This prospective, multi-institutional RCT was designed to 431 432 investigate the effect of adjuvant WBRT on cognitive function in patients with 1 to 3 BM treated with SRS. This study was graded as Class II evidence because secondary endpoints included 433 time to intracranial failure, QOL, treatment toxicity, functional independence, individual 434 cognitive assessment outcomes, long-term cognitive status, and overall survival. It was shown 435 that patients who received adjuvant therapy experienced significant deterioration in cognitive 436 437 function and quality of life at 3 months. Patients receiving adjuvant WBRT had better intracranial control rates; however, this did not lead to improved overall survival. The 438 investigators concluded that in patients with 1 to 3 brain metastases amenable to radiosurgery, 439 440 SRS alone may be the preferred treatment modality. Retrospective studies were not used to form 441 the recommendation but they also conclude that the addition of WBRT to SRS or surgery is associated with improved local control and distant intracranial control, but not survival.^{61, 62} 442 443

Lastly, a 2015 meta-analysis by Sahgal et al⁶⁰ combined 3 phase III trials to perform a pooled 444 445 analysis of patients with 1 to 4 brain metastases treated with either SRS alone or SRS + WBRT. The pooled data were individual data obtained from 3 RCTs.^{28, 50, 59} Primary outcomes included 446 survival and local and distant intracranial failure. In total, 364 of the pooled 389 patients met the 447 inclusion criteria and were included in the meta-analysis. Fifty-one percent were treated with 448 449 SRS alone and 49% were treated with SRS + WBRT. The results showed that patients <50 years of age had a significant survival benefit when SRS was used alone. The median survival for 450 451 these younger patients was 13.6 months in the SRS only group as opposed to 8.2 months in the 452 SRS and WBRT group (p=0.04). Furthermore, in patients 50 years of age or less, there was no 453 significant difference between the 2 treatment groups with respect to distant brain failure. In 454 older patients, the risk of observed distant failure was higher in the SRS alone cohort. Additionally, patients of any age with a single brain metastases had a lower chance of developing 455 456 further brain metastases as compared to those patients with 2 to 4 brain metastases (hazard ratio=

457 0.63). In all patients, SRS and WBRT was associated with a lower hazard of local brain failure

458 than SRS alone (hazard ratio 2.56). Median time to death in the SRS alone versus SRS + WBRT

459 was 10 versus 8.2 months, respectively. The authors concluded that SRS alone is the

- 460 recommended initial therapy of patients ≤ 50 years of age with 1 to 4 brain metastases.
- 461

Several Class III studies have addressed the use of SRS alone in patients with > 4 brain 462 463 metastases and confirmed that overall survival is not different for patients with > 4 brain metastases compared with 1 or 2 to 4 metastases.^{63, 64} In 1 study, patients with total tumor 464 volumes > 7 cc or > 7 metastases had significantly poorer overall survival than patients with 465 smaller volumes or number of metastases.⁶⁵ However, when comparing survival according to the 466 RTOG-recursive partitioning analysis (RPA) classifications, patients undergoing SRS appeared 467 to have an improved survival compared with the RTOG historical classification groups.⁶⁶ 468 Another retrospective study found that overall survival was predicted more by the volume of 469 brain metastases and distant metastases, rather than the number of metastases.⁶⁷ Chang et al⁶⁴ 470 reached a similar conclusion, in that the overall survival was not significantly different in 471 472 patients treated with SRS for 1 to 5, 6 to 10, 11 to 15, or >15 brain metastases, with a median survival of 10 months. The overall median progression-free survival was 9 months for thetotal 473 474 group as opposed to 6 months in patients with >15 lesions (p=0.028). However, patients with more than 15 metastases had a shorter time to progression of new brain metastases. 475

476

477 In summary, compared with surgical resection or radiosurgery alone, WBRT improves

intracranial progression-free survival but not overall survival in patients ≤ 4 brain metastases.

This supports a Level 2 recommendation to not proceed to WBRT in WHO performance status

480 0-2 patients with \leq 4 brain metastases because, compared with surgical resection or radiosurgery

alone, the addition of WBRT improves intracranial progression-free survival but not overall

482 survival. However, local therapy alone is associated with a higher incidence of both local and

- 483 distant intracranial tumor recurrence, and prospective randomized studies in patients with >4
- brain metastases have not been conducted. This supports the following Level 3 recommendation,
- 485 "Compared with surgical resection or radiosurgery alone, the addition of WBRT is not
- recommended for patients with >4 brain metastases unless the metastases' volume exceeds 7 cc,

487 or there are >15 metastases, or the size or location of the metastases are not amenable to surgical
488 resection or radiosurgery."

489

490 Synthesis of Results

WBRT has been a treatment of brain metastases for many years, and RCTs, summarized in Table 491 2, have evaluated various dose fractionation regimens. These provide Class I evidence that 492 493 altered dose/fractionation schedules of WBRT do not result in significant differences in median survival, local control or neurocognitive function when compared with "standard" WBRT dose / 494 fractionation such as 30 Gy in 10 daily fractions. The choice of which dose/fractionation scheme 495 to use is based on a combination of patient convenience and life expectancy. There is concern 496 that WBRT delivered with a high dose per fraction, (ie, >4 Gy per fraction) leads to more 497 frequent or severe neurocognitive impairment, although studies of altered fractionation did not 498 incorporate very robust neurocognitive testing. 499

500

Relatively few studies, summarized in Table 3, have been done to evaluate the outcomes of 501 502 WBRT according to the histopathology or molecular status of the primary cancer. One group of patients who may not benefit from immediate WBRT are NSCLC patients with mutant EGFR or 503 504 ALK-rearranged cancers. Targeted therapy is an option as initial treatment for asymptomatic brain metastases not amenable to SRS, withholding WBRT until the time of intracranial 505 506 progression. However, mutant EGFR or ALK-rearranged status is also a positive prognostic factor for WBRT response after WBRT. The question remains as to the optimal timing of 507 508 WBRT, or whether EGFR or ALK status can be used to predict the benefit of WBRT as opposed to other treatment modalities. Outside of lung cancer, few studies have been done that are 509 510 relevant to this question. Retrospective studies suggest that HER2-positive patients may have 511 improved outcomes following WBRT compared with HER2-negative patients. The role of 512 WBRT, as opposed to SRS, is also controversial in many histologies, but particularly for patients with melanoma. RCTs that are histology- or molecular status-specific are necessary to sort out 513 514 many of these issues.

515

An important addition to this guideline is the question regarding the effect of WBRT on
neurocognition. Tables 4, 5, and 6 summarize the neurocognitive effects seen with WBRT or

518 PCI. They also summarize the studies whose goal was to ameliorate these effects. Class I data demonstrate that the addition of WBRT to local therapy (SRS or surgery) is associated with an 519 520 increased risk of significant neurocognitive decline in patients with ≤ 4 brain metastases. This decline is apparent as early as 3 months post-RT and can persist in long-term survivors. Class I 521 522 evidence also exists to support the Level 3 recommendation to utilize memantine for its nonstatistical tendency of neurocognitive protective effects in patients with brain metastases 523 524 undergoing WBRT. There is lower level evidence suggesting that HA-WBRT may reduce the risk of neurocognitive decline compared with conventional WBRT. 525

526

Table 7 summarizes the additional data used to evaluate the effectiveness of WBRT on non-527 cognitive endpoints, such as progression-free or overall survival. There are RCTs evaluating the 528 529 use of surgical resection with or without WBRT in the treatment of patients with 1 brain metastasis. Other RCTs evaluated the use of SRS with or without WBRT for patients with 1 to 4 530 531 brain metastases. Withholding WBRT during initial treatment is associated with a higher incidence of both local and distant intracranial tumor recurrence but without a detriment to 532 533 overall survival or performance status. This led to the Level 1 recommendation of surgical resection or SRS alone as the initial treatment for patients with <4 brain metastases. However, 534 535 there are no Class I studies addressing the benefit of WBRT for patients with more than four brain metastases. Since WBRT improves progression-free survival, this supports a Level 3 536 537 recommendation of WBRT following surgical resection or radiosurgery alone.

538

539 CONCLUSION AND KEY ISSUES FOR FUTURE INVESTIGATIONS

The use of WBRT has declined over the past 10 years as the use of local and systemic therapies
has evolved. A question asked constantly by clinicians is: when is it appropriate to use WBRT?
Since the prior publication of this guideline, there have been few studies comparing various
dose/fractionation schemes for WBRT. Unless future studies incorporate more sophisticated
measures of neurocognitive outcome, there is little need to repeat these studies.

545

546 However, technological developments allow WBRT to be delivered with HA to potentially

reduce the probability of neurocognitive deficits, which are the most concerning side effect of

548 WBRT. Randomized studies are ongoing to see whether HA does lead to less cognitive

549 impairment without any reduction in intracranial control. Another technological development

- has been the ability to do an SIB, delivering a higher dose to targeted lesions during a course of
- 551 WBRT. Prospective trials are ongoing to better support the efficacy of HA and SIB.
- 552

553 The question of when to recommend WBRT, or whether it is of any benefit at all to patients with certain histopathologic or molecular subtypes remains controversial. Recent studies have 554 555 indicated that the prognosis of brain metastases is more dependent on histopathology or molecular features of the primary cancer than had been appreciated. The role of WBRT as 556 opposed to SRS is also controversial in many histologies, but particularly for patients with 557 558 melanoma. Whether these histopathology/molecular marker subtypes are both prognostic and 559 predictive of outcomes of WBRT is less clear. Future prospective randomized trials of issues 560 related to WBRT are likely to be more "targeted" to specific populations, such as specific primary cancers or even specific molecular targets. Examples of possible study groups would be 561 HER2-negative breast cancer, EGFR-mutated adenocarcinoma of the lung, or melanoma. 562 NSCLC cancer patients have been studied in a phase III RCT.⁶⁸ Patients with NSCLC and 563 564 newly diagnosed or progressive brain metastases not amenable to surgical resection or radiosurgery were randomized to either WBRT or supportive care only. There was a broad range 565 566 of eligibility criteria, but the primary was uncontrolled in approximately two-thirds of patients with extracranial metastases present in >50% of patients and a median Karnofsky Performance 567 568 Scale score of 60. No significant difference in median survival was found between patients receiving WBRT or supportive care only. The median survival of just 8 to 9 weeks is lower than 569 570 most prospective studies in brain metastases and raises the question of how patients were selected for the study. In subset analysis, WBRT appeared to provide a survival benefit to 571 572 patients who were either young, had a controlled primary cancer, or had a low RPA. 573 Nevertheless, this study supports a recommendation of supportive care only for elderly lung 574 cancer patients with a poor Karnofsky Performance Scale score, uncontrolled primary, or progressive systemic disease. Future guidelines will hopefully be able to address this issue in 575 576 more depth.

577

578 There have also been pharmacologic developments to ameliorate the neurocognitive effects of579 WBRT. The most promising drug is memantine, started early in the course of WBRT and

continued for ≥ 6 months. Memantine is well tolerated, and few patients will refuse to take it given the risks and benefits. It has been utilized in a North American study of WBRT with HA.⁵³ There is also concern for the potential neurocognitive detriment caused by PCI in patients without known brain metastases. There is an ongoing trial to determine if HA would be beneficial in this patient population (NRG-CC003). This trial randomizes patients with SCLC to PCI to 25 Gy in 10 fractions with or without hippocampal avoidance.

The decision regarding local therapies (SRS and surgery) as opposed to WBRT needs further 587 prospective studies when there are >4 brain metastases. Studies have clearly shown that local 588 589 therapy is sufficient and reasonable for patients with 1 to 4 brain metastases but the treatment of patients with more numerous metastases still needs to be addressed. Technically, large number 590 591 of lesions can be treated with SRS, but is that necessarily the appropriate treatment? The main reason to use SRS is partly the convenience to the patient of a short treatment but seems 592 593 primarily related to concerns of neurocognitive deficit following WBRT and many patients will currently refuse WBRT even when it is recommended. Studies of SRS have not yet documented 594 595 the neurocognitive effects of SRS, particularly if there are >4 lesions. Further studies to evaluate the timing of WBRT relative to local therapies or systemic therapy would be beneficial to 596 597 develop patient-specific treatment plans.

598 Potential Conflicts of Interest

599 The Brain Metastases Guideline Update Task Force members were required to report all 600 possible conflicts of interest (COIs) prior to beginning work on the guideline, using the COI disclosure form of the AANS/CNS Joint Guidelines Review Committee, including potential 601 COIs that are unrelated to the topic of the guideline. The CNS Guidelines Committee and 602 Guideline Task Force Chair reviewed the disclosures and either approved or disapproved the 603 604 nomination. The CNS Guidelines Committee and Guideline Task Force Chair are given latitude to approve nominations of task force members with possible conflicts and address this by 605 restricting the writing and reviewing privileges of that person to topics unrelated to the possible 606 607 COIs. The conflict of interest findings are provided in detail in the companion introduction and methods manuscript. 608

609 Disclosures

610

These evidence-based clinical practice guidelines were funded exclusively by the

Congress of Neurological Surgeons and the Tumor Section of the Congress of Neurological
Surgeons and the American Association of Neurological Surgeons, which received no funding
from outside commercial sources to support the development of this document.

614 **Disclaimer of Liability**

This clinical systematic review and evidence-based guideline was developed by a 615 multidisciplinary physician volunteer task force and serves as an educational tool designed to 616 617 provide an accurate review of the subject matter covered. These guidelines are disseminated with the understanding that the recommendations by the authors and consultants who have 618 collaborated in their development are not meant to replace the individualized care and treatment 619 advice from a patient's physician(s). If medical advice or assistance is required, the services of a 620 competent physician should be sought. The proposals contained in these guidelines may not be 621 suitable for use in all circumstances. The choice to implement any particular recommendation 622 contained in these guidelines must be made by a managing physician in light of the situation in 623 624 each particular patient and on the basis of existing resources.

625 Acknowledgments

626 The authors acknowledge the CNS Guidelines Committee for its contributions throughout the development of the guideline and the AANS/CNS Joint Guidelines Review Committee for its 627 review, comments, and suggestions throughout peer review, as well as Trish Rehring, MPH, 628 CHES, CNS Guidelines Senior Manager, and Mary Bodach, MLIS, Senior Guidelines Specialist, 629 630 for their assistance. Throughout the review process, the reviewers and authors were blinded from one another. At this time, the guidelines task force would like to acknowledge the following 631 632 individual peer reviewers for their contributions: Manish Aghi, MD, PhD, Manmeet Ahuwalia, MD, Sepideh Amin-Hanjani, MD, Edward Avila, MD, Maya Babu, MD, MBA, Kimon Bekelis, 633 634 MD, Priscilla Brastianos, MD, Paul Brown, MD, Andrew Carlson, MD, MS, Justin Jordan, MD, Terrence Julien, MD, Cathy Mazzola, MD, Adair Prall, MD, Shayna Rich, MD, PhD, Arjun 635 Sahgal, MD, Erik Sulman, MD, May Tsao, MD, Michael Voglebaum, MD, Stephanie Weiss, 636 MD, and Mateo Ziu, MD. 637

638 FIGURES

639 Figure 1 PRISMA Flow Diagram

640 **TABLES**

641 Table 1 Search Strategies

PUBMED (NLM), searched on February 3-4, 2016:

Step 1: Brain Neoplasms [Mesh]

Step 2: (brain OR brainstem OR intracranial) AND (cancer OR tumor* OR tumour* OR neoplasm*) [TIAB]

Step 3: #1 OR #2

Step 4: Neoplasm Metastasis [Mesh]

Step 5: (brain OR brainstem OR intracranial) AND (Metastas*) [TIAB] **Step 6:** #4 OR #5

Step 7: #3 AND #6

Step 8: Brain neoplasms/secondary [Mesh]

Step 9: #7 OR #8

Step 10: Cranial irradiation [Mesh]

Step 11: WBRT [TIAB]

Step 12: "whole brain" [TIAB] AND (radiotherap* OR radiation OR radiation therap* OR irradiation) [TIAB]

Step 13: #10 OR #11 OR #12

Step 14: #9 AND #13

Step 15: #14 AND English [Lang]

Step 16: (animals [MeSH] NOT humans [MeSH]) OR case reports [PT] OR review [PT] OR comment [PT] OR letter [PT] OR editorial [PT] OR addresses [PT] OR news [PT] OR "newspaper article" [PT]

Step 17: #15 NOT #16

Step 18: #17 AND ("1990/10/01"[PDAT] : "2015/12/31"[PDAT])

Embase, searched on February 3-4, 2016:

Step 1: 'Brain tumor'/exp

Step 2: ((brain OR brainstem OR intracranial) NEAR/3 (cancer OR tumor* OR tumour* OR neoplasm*)):ab, ti

Step 3: #1 OR #2

Step 4: 'brain metastasis'/exp

Step 5: ((brain OR brainstem OR intracranial) NEXT/3 metastas*):ab,ti

Step 6: #4 OR #5

Step 7: #3 AND #6

Step 8: 'brain radiation'/exp

Step 9: WBRT:ab,ti

Step 10: ('whole brain' NEXT/3 (radiation OR radiotherapy* OR irradiation)):ab,ti

Step 11: #8 OR #9 OR #10

Step 12: #7 AND #11

Step 13: Limits: English, humans, 1990-2015, article OR conference paper NOT case report

COCHRANE, searched on February 3-4, 2016:

Step 1: MeSH descriptor: [Brain Neoplasms] explode all trees

Step 2: ((brain OR brainstem OR intracranial) NEAR/3 (cancer OR tumor* OR tumour* OR neoplasm*)):ti,ab,kw

Step 3: #1 OR #2

Step 4: MeSH descriptor: [Neoplasm Metastasis] explode all trees

Step 5: ((brain OR brainstem OR intracranial) NEAR/3 Metastas*):ti,ab,kw

Step 6: #4 OR #5

Step 7: #3 AND #6

Step 8: MeSH descriptor: [Brain neoplasms/secondary]

Step 9: #7 OR #8

Step 10: MeSH descriptor: [Cranial irradiation] explode all trees

Step 11: WBRT:ti,ab,kw

Step 12: ('whole brain' NEXT/3 (radiation OR radiotherapy* OR irradiation)):ti,ab,kw

Step 13: #10 OR #11 OR #12

Step 14: #9 AND #13

Step 15: Filtered 1990-2015

642

644 Table 2. Outcomes of different dose/fractionation schedules of whole brain radiation the	rapy
---	------

61	E
04	·)

Author	Description of Study	Data	Conclusions
(Year)		Class	
Sayed ²¹ (2015)	Study description Prospective nonrandomized study at 1 center to compare 2 WBRT regimens for differences in response and overall survival. Patient population 93 patients with MRI scan with >3 brain metastases, good performance	III	Results Median survival G1: 9 months G2: 10 months (p = 0.02) MRI response at 3 months (partial response or stable) G1: 85%
	brain metastases, good performance status. <i>Treatment regimen</i> G1: 20 Gy in 4 Gy fractions (n = 54) G2: 30 Gy in 3 Gy fractions (n = 39)		G1: 83% G2: 87% (p = NS) Author's conclusions No significant difference in response or overall survival. Shorter fractionation beneficial to patients with RPA 2 (less time spent in treatment and little concern for late toxicity) and to radiation facilities (quicker throughput).
			<i>Comments and conclusions</i> No neurocognitive testing. Designated as Class III because it was a very small prospective study with "assignment" to 1 of 2 dose schedules. Statistical rationale for the accrual goal not given.

Median survival
G1: 26 weeks
G2: 29 weeks
(p = 0.955)
MRI response at 3 months (complete
or partial response or stable)
G1: 81%
G2: 93%
Author's conclusions
No significant difference in response
or overall survival. 20 Gy in 5
fractions recommended for patients
with poor performance status, 30 Gy
in 10 fractions for patients with good
performance status.
Comments and conclusions
No neurocognitive testing. No
significant difference in improvement
in ADL between 2 arms, but ADL of
both groups improved post-WBRT.
Designated as Class III since the
patient numbers are small and could
account for the nonsignificant finding.
Statistical rationale for the accrual
goal not given.
ACC(AN OCCAN Off wir PCN sirb C PacS g

Graham et	Study description	Ι	Results
al ¹⁹ (2010)	RCT in cooperative group (ECOG) to		Median survival
	compare intracranial control rate and		G1: 6.1 months
	QOL of 2 WBRT schemes.		G2: 6.6 months
	Patient population		(p = NS)
	113 patients with good performance		Intracranial progression
	status: stable, absent, or concurrent		G1: 44%
	presentation of extracranial disease		G2: 64%
	T Treatment regimen		(p = 0.03)
	G1: 40 Gy in 2 Gy fx BID $(n = 57)$		Author's conclusions
	G2: 20 Gy in 5 Gy fx $(n = 56)$		Intracranial disease control was
			improved and OOL maintained with
			40 Gy in 20 twice-daily fractions.
			Authors recommend this
			dose/fractionation for patients with
			better prognosis.
			<i>Comments and conclusions</i>
			The dose/fractionation regimen was
			not a significant factor affecting
			overall survival on MVA. Significant
			factors for improved survival on MVA
			were resection, supratentorial location,
			absent extracranial metastases.
			vounger age. OOL and cognitive
			function outcomes similar in both
			groups. Mean scores of OOL and
			cognitive function were stable to
			improved in most patients during the
			6-9 months following treatment
Davev et al ⁵	Study description	Ι	Results
(2008)	RCT at 2 centers to compare overall		Median survival
	survival following accelerated and		G1: 19.1 weeks
	conventional hypofractionated		G2: 19.1 weeks
	WBRT.		(survival curves: log-rank; $p = NS$)
	Patient population		Median time to treatment for
	90 patients with radiologic features		intracranial relapse
	of brain metastases on CT or MRI.		G1:14 weeks
	Good performance status, life		G2: 32 weeks
	expectancy >6 weeks.		(p = 0.03)
			Author's conclusions
	Treatment regimen		Although accelerated WBRT may
	G1: 20 Gy/5 daily fractions ($n = 45$)		improve intracranial control, this did
	G2: 40 Gy/20 fractions/twice daily (n		not lead to improved overall survival.
	= 45)		Comments and conclusions
	,		No QOL or neurocognitive testing.
			Favorable prognostic factors on MVA
			were low RPA class and colorectal
			pathology.
			pathology.

Murray et	Study description	Ι	Results
al ⁹ (1997)	RCT by cooperative group (RTOG)		Median survival
	comparing accelerated		G1: 4.5 months
	hyperfractionated WBRT with		G2: 4.5 months
	standard fractionation.		(p = NS)
	Patient population		# pts with recurrence/progression
	429 patients with brain metastases		G1: 109/124 (88%)
	measurable by CT or MRI scans.		G2: 105/118 (89%)
	Karnofsky scale score >70.		(<i>p</i> value not reported)
	neurologic function class of 1-2.		Median time to recurrence /
	Treatment regimen		progression
	G1: 30 Gv/10 fractions/daily (n =		G1: 11 weeks
	213)		G2: 10 weeks
	G2: 54 4 Gy/34 fractions/twice daily		(<i>n</i> value not reported)
	(n = 216)		Author's conclusions
	(11 210)		54 4 Gy in 34 fractions not
			recommended
			Comments and conclusions
			No neurocognitive testing 54.4 Gy
			delivered as 32 Gy in 20
			fractions/twice daily followed by 24.4
			Gy boost (visible lesion with 2 cm
			margin) in 14 fractions/twice deily
			A ga performance status, extent of
			Age, performance status, extent of
			netastatic disease, and status of
Duiasturasu at	Starla deservición	T	primary were prognostic factors.
110 (1006)	BCT at 25 institutions comparing 2	1	Kesuits Madian anningl
al (1990)	WDDT as zimens		Median survival
	W DR I Teglinells		G1. 77 days
	Fallent population		G_{2} . 64 days
	544 patients with symptomatic brain		(p = 0.04 for entire survival curve, no
	metastases by C1 scan or		Authorized an inequal survival)
	interpreter in the new Density details		Author's conclusions
	intracranial biopsy. Required stable		For majority of patients, no advantage
	dose dexametnasone over week prior		to longer courses of radiation therapy.
	to randomization, who performance		Comments and conclusions
	status of 0-3, neurologic status <4 by		No neurocognitive testing. Small
			improvement in survival with longer
	I reatment regimen		course but not thought by authors to
	G1: 12 Gy/2 fractions (n = $2/4$)		be clinically meaningful. Might
	G2: 30 Gy/10 fractions ($n = 2/0$)		recommend longer course in small
			number of patients with good
			prognosis (temale gender, age <60
			years, breast primary, solitary brain
			metastasis, dexamethasone ≤8 mg/day,
			WHO performance status <3).

Chatani et	Study description	II	Results
al ³ (1994)	RCT evaluating 2 different WBRT		Median survival
	regimens in patients with normal		G1: 5.4 months
	(<250 U/L) vs high LDH		G2: 4.8 months
	Patient population		(p = NS)
	162 patients with lung cancer		G3: 3.4 months
	(stratified for small vs nonsmall) with		G4: 2.4 months
	CT brain scan.		(p = NS)
	Treatment regimen		Author's conclusions
	Normal LDH:		LDH is important prognostic factor.
	G1: 30 Gy/10 fractions ($n = 46$)		30 Gy/10 fractions recommended.
	G2: 50 Gy/20 fractions with field		Comments and conclusions
	reduction after 30 Gy if possible (n =		No neurocognitive testing. RCT but
	46)		designated as class II and the patient
	High LDH:		numbers were small, with no clear
	G3: 30 Gy/10 fractions ($n = 35$)		inclusion criteria beyond "lung
	G4: 20 Gy/5 fractions (n = 35)		cancer."

Sause et al ¹¹	Study description	II	Results
(1993)	Cooperative group (RTOG) phase		Median survival
· · /	I/II trial of accelerated fractionation		G1: 4.2 months
	Patient population		G2: 5.2 months
	Patients eligible had controlled or		G3: 4.8 months
	absent primary with metastases than		G4: 6.4 months
	brain stable, or only brain metastases		(p = NS)
	with primary uncontrolled.		Author's conclusions
	Treatment regimen		Nonsignificant improvement in
	G1: 32 Gy in 1.6 Gy fractions +		survival in higher dose arms was taken
	boost to 48.0 Gy] (n = 62)		as an encouraging result.
	G2: 32 Gy in 1.6 Gy fractions +		Comments and conclusions
	boost to 54.4 Gy] (n = 115)		No neurocognitive testing. Used as
	G3: 32 Gy in 1.6 Gy fractions +		basis for subsequent RTOG study. ⁹
	boost to 64.0 Gy] (n = 104)		Designated as class II since it was a
	G4: 32 Gy in 1.6 Gy fractions +		phase I/II randomized phase II study
	boost to 70.4 Gy (n = 53)		within cooperative group (RTOG)
	Fractions administered twice daily		
Haie-Meder	Study description	Ι	Results
et al ⁶ (1993)	RCT at 3 institutions comparing		Median survival
	2WBRT treatment regimens		G1: 4.2 months
	Patient population		G2: 5.3 months
	216 patients with lung, breast, head		(p = NS)
	and neck, or unknown primaries.		Author's conclusions
	Diagnosed by CT scan. Age <71		No difference in overall survival or
	years. Ineligible if Karnofisky scale		neurologic response or incidence in
	score <20 or life expectancy <1		complications. A radiation schedule as
	month		short as 18 Gy in 3 fractions as good
	Treatment regimen		as longer radiation schedules. No
	G1: 18 Gy/3 fractions ($n = 110$)		neurologic complications occurred
	G2: 18 Gy/3 fractions; 4 weeks later		among 45 patients living >12 months
	a second identical course or 25 Gy/10		Comments and conclusions
	fractions $(n = 106)$		Investigators could decide on whether
			G2 received 18 or 25 Gy in the second
			course- shortest regimen
			recommended if poor general or
			neurologic status. Methods of
			assessing neurocognitive function in
			follow-up were not clearly described.
			Two clinical factors predictive of poor
			survival were presence of multiple
			brain metastases and/or extracranial
			metastases.

Komarnicky	Study description	Ι	Results
et al ⁷ (1991)	RCT by cooperative group (RTOG)		Median survival
()	evaluating role of misonidazole		G1: 4.5 months
	combined with WBRT		G2: 4.1 months
	Patient population		G3: 3.1 months
	859 patients with measurable disease		G4: 3.9 months
	on CT, 18-75 years of age.		(p = NS)
	Karnofsky scale score >40 , able to		# of pts retreated for BM after
	work		protocol therapy
	Treatment regimen		G1: 54/179 (30%)
	G1: 30 Gy/10 fractions ($n = 193$)		G2: 54/180 (30%)
	G2: 30 Gy/6 fractions ($n = 200$)		G3: 33/173 (19%)
	G3: 30 Gy/6 fractions + MISO ($n =$		G4: 54/163 (33%)
	196)		(p = NS)
	G4: 30 Gy/10 fractions + MISO ($n =$		Author's conclusions
	190)		Recommended treatment was 30 Gy in
			10 fractions, without misonidazole
			Comments and conclusions
			No neurocognitive testing.
			Approximately one-third of patients
			died of uncontrolled metastases,
			suggesting the need for more effective
			therapy.
Chatani et	Study description	II	Results
al ⁴ (1985)	RCT at a single institution		Median survival
	Patient population		G1: 4 months
	69 consecutive patients with		G2: 3 months
	metastases from lung cancer		(p = NS)
	Treatment regimen		Survival at 6 months
	G1: 30 Gy/10 fractions (n = 35)		G1: 42%
	G2: 50 Gy in 20 fractions $(n = 34)$		G2: 14%
	-		(<i>p</i> < 0.05)
			Author's conclusions
			Performance status and LDH were the
			factors influencing 6-month survival
			Comments and conclusions
			No neurocognitive testing. Designated
			as Class II due to small numbers and
			was limited to lung cancer.

Kurtz et al ⁸	Study description	Ι	Results
(1981)	RCT by cooperative group (RTOG)		Median survival
	Patient population		G1: 18.2 weeks
	309 patients (255 evaluable) from 31		G2: 16.9 weeks
	participating institutions. Ineligible if		(p = NS)
	evidence of other sites of metastatic		<i># pts with recurrence/progression in</i>
	disease or progressive untreated		patients with information available
	primary, or poor neurologic function		G1: 109/124 (88%)
	Treatment regimen		G2: 105/118 (89%)
	G1: 30 Gy/10 fractions (n = 130)		(<i>p</i> value not reported)
	G2: 50 Gy/20 fractions (n = 125)		Author's conclusions
			30 Gy in 10 fractions as effective as
			50 Gy.
			Comments and conclusions
			Excluded patients with evidence of
			extracranial metastases, uncontrolled
			primaries, or poor neurologic function.
			21% of patients in 50 Gy arm unable
			to complete therapy. No
			neurocognitive testing. Authors
			recommended 20-30 Gy in 5-10
			fractions

Borgelt et	Study description	Ι	Results
al ² (1981)	Two large (>900 patients in each		Median survival
	study) national RCTs by cooperative		First RCT:
	group study (RTOG) with optional		G1: 15 weeks
	randomization to very short regimens		G2: 21 weeks
	at small number of institutions. This		(survival curves: log-rank; $p = NS$)
	study is analysis of patients		Second RCT:
	randomized at 4-6 centers that had		G3: 13 weeks
	very short regimens open.		G4: 12 weeks
	Patient population		(survival curves: log-rank; $p = NS$)
	Ineligible if lesions too numerous or		Median time to progression (measured
	symptoms too vague to allow for		by deterioration in neurologic
	adequate follow-up or assessment.		function):
	First RCT: 155 patients randomized		First RCT:
	at 6 institutions		Initial NF 1: G1: 9 wks; G2: 14 wks
	Second RCT: 78 patients randomized		Initial NF 2: G1: 9 wks; G2: 10 wks
	at 4 institutions		Initial NF 3: G1: 7 wks; G2: 12 wks
	Treatment regimen		(Cox's model; $p = 0.07$)
	First RCT:		Second RCT:
	30 Gy/10 fractions/2 wks (n = 233)		Initial NF 1: G3: 9 wks; G4: 10 wks
	30 Gy/15 fractions/3 wks (n = 217)		Initial NF 2: G3: 11 wks; G4: 8 wks
	40 Gy/15 fractions/3 wks ($n = 233$)		Initial NF 3: G3: 3 wks; G4: 3 wks
	40 Gy/20 fractions/4 wks ($n = 227$)		(Cox's model; $p = NS$)
	10 Gy/single fraction: option in 6		Authors' conclusions
	institutions $(n = 26)$		Response of patients receiving the
	Second RCT:		ultra-rapid treatment (10-12 Gy in 1-2
	20 Gy/5 fractions/1 wk (n = 31)		fractions) as assessed by the percent
	12 Gy in 2 fractions $(n = 33)$		who had improvement in neurologic
	Analysis by group		function, was comparable to that of
	First RCT:		patients receiving the more protracted
	G1: 10 Gy/1 fraction		schedules. Promptness of neurologic
	G2: 30-40 Gy over 2-4 weeks		function improvement, treatment
	Second RCT:		morbidity, and median survival were
	G3: 12 Gy/2 fractions		also comparable to those of patients
	G4: 20 Gy over 1 week		receiving the more protracted courses.
			However, the duration of
			improvement, time to progression of
			neurologic status and rate of complete
			disappearance of neurologic
			symptoms were generally less for
			patients treated with ultrarapid
			treatment. Ultrarapid treatment may
			not be as effective as higher dose
			schedules in the palliation of brain
			metastases.
			Comments and conclusions
			No neurocognitive testing. Large
			cooperative group RCT but relatively
			small numbers of patients in the

	second RCT testing ultrarapid
	treatment.

Borgelt et	Study description	Ι	Results
al ³³ (1980)	2 RCT by cooperative group (RTOG)		Median survival
× ,	to study effectiveness of different		First RCT: 18 weeks. No significant
	WBRT dose fractionation schemes		difference between G1-4 (range 16-20
	on palliation.		wks)
	I		Second RCT: 15 weeks. No
	Patient population		significant difference between G1-3
	First RCT 993 (910 evaluable) and		(range 14-15 wks)
	second RCT 1001(902 evaluable)		Brain metastases as cause of death
	patients with brain metastases		First RCT: 49% No significant
	established by clinical symptoms		difference between G1-4 (range 46-
	EEG. radioisotope brain scan.		54%)
	arteriogram pneumoencephalogram		Second RCT: 31% No significant
	or biopsy Patients excluded if		difference between G1-3 (range 25-
	lesions too numerous or symptoms		33%)
	too vague to allow for adequate		Palliation of neurologic symptoms
	follow-up or assessment		Relief in 60-90% of patients with no
	Treatment regimen		significant difference between studies
	First RCT.		Improvement in neurologic function at
	G1: 30 Gv/10 fractions/2 wks (n –		2 weeks
	233)		First RCT
	G_2 : 30 Gy/15 fractions/3 wks (n =		G1: 55%
	217)		G2-4· 43%
	G3: 40 Gy/15 fractions/3 wks (n =		(p = 0.06)
	233)		Second RCT
	$G4^{\circ} 40 \text{ Gv}/20 \text{ fractions/4 wks (n =}$		G1: 64%
	227)		G_{2-3} : 54%
	Second RCT:		(p = 0.01)
	G1: 20 Gv/5 fractions/ 1 wk (n =		Author's conclusions
	447)		All treatment schedules were
	G2: 30 Gy/10 fractions/ 2 wks (n =		comparable with respect to frequency
	228)		of improvement, duration of
	G3: 40 Gv/15 fractions/ 3 wks (n =		improvement, time to progression.
	227)		survival, and palliation. Important
			prognosticators of response included
			initial neurologic function and general
			performance status. Administration of
			steroids during irradiation favored
			more rapid improvement
			Comments and conclusions
			The administration of steroids was not
			controlled in either study Results by
			treatment regimens not presented
			separately Primary site (lung vs breast
			vs other) had no influence on
			palliative benefit of WBRT Palliation
			reported sooner in shorter WBRT
			regimens but reporting bias suspected.
			Relatively small numbers of patients
			in the second RCT testing ultrarapid
			treatment. No neurocognitive testing.

- ADL, activities of daily living; BID, twice daily; CT, computed tomography; ECOG, Eastern
- 647 Cooperative Oncology Group; Gy, Gray; LDH, lactate dehydrogenase; MRC, Medical Research
- 648 Council; MRI, magnetic resonance imaging; MVA, multivariate analysis; QOL, quality of life;
- 649 RCT, randomized controlled trial; RPA, recursive partitioning analysis; WBRT, whole brain
- 650 radiation therapy; WHO, World Health Organization.
- 651
- 652

Author (Year)	Description of Study	Data Class	Conclusions
Lee et al ³⁰ (2012)	Study description Single institution, retrospective review of impact of EGFR mutation in patients with NSCLC brain metastases treated with WBRT in terms of RPFS and OS <i>Patient population</i> 43 patients with NSCLC (40 adenocarcinoma, 1 adenosquamous carcinoma, 2 poorly differentiated carcinoma) EGFR-positive: 30 patients with EGFR mutation (15 with exon 19 deletions, 15 with exon 21 L858R point mutation); EGFR-negative: 13 patients with EGFR wild-type <i>Treatment regimen</i> 43 patients underwent WBRT (30-40 Gy in 10-20 fractions, 40% of patients had additional local boost up to 50-60 Gy). EGFR tyrosine kinase inhibitor (TKI) given to 50% of EGFR-positive and 69% of EGFR-negative patients.	III	Results Median follow-up 15 months Radiographic response to RT Overall 70% radiographic response rate to RT EGFR-positive: 80% EGFR-negative: 46 ($p = 0.037$) Multivariate analysis of radiographic response EGFR mutation was only predictor for treatment response (odds ratio: 4.67, 95% CI; p = 0.032) Median intracranial RPFS Overall 18 months (95% CI: 8.33-27.68) EGFR-positive: 21 months EGFR-negative: 12 months ($p = 0.009$) Multivariate analysis for RPFS EGFR mutation ($p = 0.025$) and RPA class ($p = 0.026$) were 2 predictors for longer RPFS Overall survival Median OS 15 months (95% CI: 9.61-20.39 months) Univariate analysis showed that EGFR mutations ($p = 0.061$) and performance status ($p = 0.076$) had a trend to predict OS. Author's conclusion Mutant EGFR in NSCLC brain metastasis patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following WBRT Comments and conclusions This is a retrospective case series (class III) of patients with brain metastasis from NSCLC treated with WBRT, which found mutant EGFR as a positive prognostic factor for treatment response after WBRT. EGFR TKI given to more than half of these patients and difficult to know how this impacted results. EGFR TKI should not be given to patients known to be EGFR wild-type, since it has been shown in other settings to be associated with poor outcome.

Table 3. Effect of histology of primary cancer on outcomes of whole brain radiation therapy

Gow et al ³¹ (2008)	Study description Single institution, retrospective case series of patients with brain metastases from lung adenocarcinoma treated with WBRT, evaluating the role of EGFR mutation status in response to WBRT and survival <i>Patient population</i> 63 patients patient with brain metastases from lung adenocarcinoma treated with WBRT EGFR-positive: Positive EGFR mutations (n = 46) EGFR-negative: Wild-type EGFR (n = 17) <i>Treatment regimen</i> 63 patients with NSCLC brain metastases received WBRT (30-35 Gy in 15 to 18 fractions); 18 patients received gefitinib treatment (either before or during WBRT treatment). <i>Pertinent methods of study technique</i> Univariate and logistic regression models were used to test predictive factors associated with clinical response; log-rank test and cox regression were used to identify factors affecting survival	III	Results <i>Clinical response to WBRT</i> Overall response rate 46% EGFR-positive: 54% EGFR-negative: 24% ($p = 0.045$) Both EGFR expression and EGFR tyrosine kinase inhibitor administration were independently associated with response to WBRT ($p = 0.034$ and $p = 0.029$, respectively) <i>Survival with WBRT</i> Median survival was 14.7 months (95% CI, 7.5-21.9 months) Better OS in responders vs nonresponders to WBRT (20.7 vs 6.6 months, $p = 0.017$). On univariate analysis, RPA class ($p = 0.025$), KPS ($p = 0.013$), and absence of extracranial metastases ($p = 0.005$) were significant prognosticators for overall survival. EGFR mutation ($p = 0.131$) and administration of EGFR TKI during WBRT ($p = 0.121$) showed a trend but no significant correlation with survival. <i>Author's conclusion</i> EGFR mutation during WBRT are independent predictors of response to WBRT in brain metastases from lung adenocarcinoma. <i>Comments and conclusion</i> This retrospective case series (class III) found mutant EGFR expression and TKI administration were predictive of improved response to WBRT, with a trend to improved response to WBRT.
-----------------------------------	--	-----	---

Wolstenholm	Study description	III	Results
et al^{32} (2008)	Single institution, retrospective case series		
	examining the influence of HER2 status on		Median survival after WBRT
	outcome of patients with brain metastases		HER2-: 8 months
	from breast cancer who received WBRT		HER2+: 4 months
			p=0.008
	Patient population		
	181 patients with breast cancer metastasis		Prognostic factors
	and known HER2 status receiving WBRT		8 patients (4% of entire study population) had
	HER2+ (n=88)		solitary brain metastases, with significantly
	HER2- (n=93)		improved survival compared to multiple
			brain metastases (p=0.005); 6 of these
	Treatment regimen		patients were HER2+
	WBRT regimens included 20 Gy in 5		On univariate analysis performance status
	fractions or 30 Gy in 10 fractions (5 and 2		was significant predictor of longer survival
	patients in the HERR2+ and HER2- groups		(p=0.01)
	respectively received surgery as primary		On multivariate analysis HER2 status was an
	treatment followed by WBRT, and 11 and 1		independent prognostic factor (p=.02)
	patients in the HER2+ and HER2- groups		
	respectively received stereotactic radio		Author's conclusion
	surgery (18-22 Gy at the 90-100%) in		Improved median survival in patients with
	addition to WBRT.		HER2+ status following WBRT, which could
	Heterogeneous chemotherapy regimens;		be attributed to a more aggressive approach
	trastuzumab treatment in 53 HER2+		to their management with combined
	patients.		cytotoxic chemotherapy and ongoing
			trastuzumab.
	Pertinent methods of study technique		
	Univariate and multivariate Cox regression		Comments and conclusions
	analysis of prognostic factors; Kaplan-		This is a retrospective study (Class III) with
	Meier survival analysis with log-rank test		no comparison group, with a heterogeneous
			mix of treatments in addition to WBRT and
			varied chemotherapy regimens, including use
			of trastuzumab in a portion of the HER2+
			patients.
			-

Sundstrom et	Study description	III	Results
al ²⁹ (1998)	Single institution, retrospective review of		
	patients treated with WBRT for brain		Median survival by primary tumor type
	metastases diagnosed by CT or MRI with		Breast cancer: 7 months (range 1–62 months)
	minimum midline dose to the whole brain		Lung cancer: 4 months (range 1–21 months)
	of at least 25 Gy.		Renal cell: 4 months (range 2–34 months)
			Melanoma: 3 months (range 1–6 months)
	Patient population		Other: 4 months (range 1–9 months)
	Breast cancer (n=19)		Survival curves: P-value not reported
	Lung cancer (n=35)		
	Renal cell (n=9)		Median time to recurrence of brain
	Melanoma (n=6)		<i>metastases</i> Not
	Other (n=6)		reported
	Extra-cranial metastases		
	Breast: 17/19		Tumor control, functional performance,
	Lung: 6/35		cause of death, adverse events
	Renal cell: 5/9		Not reported by histology
	Melanoma: 4/6		
	Other: 5/6		Author's conclusions
			Approximately two-thirds of the patients
	Treatment regimens		experienced a relief in symptoms allowing a
	WBRT mean dose 30 Gy (range 25–40 Gy)		reduction in the dose of corticosteroid
	in 1.8–3 Gy fractions		medication, which clearly supports the use of
			whole-brain radiotherapy as a palliative
			treatment.
			Comments and conclusions
			Designated Class III since numbers too small
			to allow meaningful statistical comparison
			between histologies.

Borgelt et	Study description	II	Results
al ³³ (1980)	2 RCT by cooperative group (RTOG) to		Median survival
and Borgelt	study effectiveness of different WBRT		First RCT: 18 weeks. No significant
et al^2 (1981)	dose fractionation schemes on palliation.		difference between G1-4 (range 16-20 wks)
			Second RCT: 15 weeks. No significant
	Patient population		difference between G1-3 (range 14-15 wks)
	First RCT 993 (910 evaluable) and second		Brain metastases as cause of death
	RCT 1001 (902 evaluable) patients with		First RCT: 49%. No significant difference
	brain metastases established by clinical		between G1-4 (range 46-54%)
	symptoms, EEG, radioisotope brain scan,		Second RCT: 31% No significant difference
	arteriogram, pneumoencephalogram, or		between G1-3 (range 25-33%)
	biopsy.		Primary site
	Stratified by site of primary lesion: lung vs		60% of patients had lung primaries.
	breast vs other, and presence or absence of		Lung cancer patients more likely to have
	metastases to sites other than brain;		brain as only site of metastases; primary site
	pPatients excluded if lesions too numerous		had no influence on response to WBRT.
	or symptoms too vague to allow for		Time to progression longer for breast cancer
	adequate follow-up or assessment.		patients.
	Treatment regimen		Median survival for breast cancer patients
	First RCT:		longer than for lung cancer patients (21
	G1: 30 Gy/10 fractions/2 wks $(n = 233)$		weeks vs 16 wks, $p < 0.001$). This survival
	G2: 30 Gy/15 fractions/3 wks $(n = 217)$		difference between breast and lung cancer
	G3: 40 Gy/15 fractions/3 wks ($n = 233$)		not seen in nonambulatory patients.
	G4: 40 Gy/20 fractions/4 wks ($n = 227$)		Author's conclusions
	Second RCT:		All treatment schedules were comparable
	G1: 20 Gy/5 fractions/ 1 wk ($n = 447$)		with respect to frequency of improvement,
	G2: 30 Gy/10 fractions/ 2 wks $(n = 228)$		duration of improvement, time to
	G3: 40 Gy/15 fractions/ 3 wks $(n = 227)$		progression, survival, and palliation.
			Important prognosticators of response
			included initial neurologic function and
			general performance status. Administration
			of steroids during irradiation favored more
			rapid improvement
			Comments and conclusions
			Primary site (lung vs breast vs other) had no
			influence on palliative benefit of WBRT.
			The administration of steroids was not
			controlled in either study. Palliation reported
			sooner in shorter WBRT regimens but
			reporting bias suspected. Relatively small
			numbers of patients in the second RCT
			testing ultrarapid treatment. Designated class
			II since results by treatment regimens not
			presented separately by histology.

EGFR, epidermal growth factor receptor; Gy, Gray; KPS, Karnofsky Performance Scale; NSCLC, non–small cell lung cancer; OS, overall survival; RCT, randomized controlled trial; RPFS, radiologic progression-free survival; TKI, tyrosine kinase inhibitor; WBRT, whole brain

radiation therapy.

Table 4. Neurocognitive outcomes of prophylactic cranial irradiation versus no prophylactic cranial irradiation for patients without brain metastases

Author and	Description of Study	Data Class	Conclusions
Year			
Wolfson et al ⁴³	Study description	II	Results
(2011)	Secondary endpoint of multi-		Statistically significant differences for COWAT ($p = 0.03$) and TMT-A
	institutional phase II RCT		(adjusted $p = 0.03$) testing at baseline among the 3 groups.
	SCLC histology ($N = 264$)		Proportion with ND (regardless of brain metastases) at 12-months:
	Testing different PCI RT schedules		G1: 62%
	for patients with SCLC in complete		G2: 85%
	remission after induction therapy.		G3: 89%
	Treatment regimens		Significant difference in ND between G1 and G2/3 ($p = 0.03$)
	G1: 25 Gy in 10 fractions (n = 131)		Proportion with ND without brain metastases at 12-months:
	G2: 36 Gy in 18 fractions $(n = 67)$		G1: 60%
	G3: 36 Gy in 24 fractions, 1.5 Gy		G2: 85%
	BID $(n = 66)$		G3: 89%
	Randomization to 25 Gy vs 36 Gy,		Significant difference in ND between G1 and G2/3 ($p = 0.02$)
	then secondary randomization to G2		Logistic regression model for ND without brain metastases at 12 months
	vs G3.		showed significantly higher risk with 36 Gy ($p = 0.03$) and older age ($p =$
	ND defined as a significant		0.005)
	decrease at 12 months in at least		Author's conclusion
	one neurocognitive test (HVLT,		Due to increased risk of ND with 36 Gy PCI, 25 Gy PCI remains standard of
	COWAT, or TMT-A and -B) from		care for this patient population
	baseline regardless of brain		Comments and conclusions
	metastases		Formal neurologic testing within prospective trial indicating that ND increased
			with increasing WBRT dose, and there was no beneficial neurocognitive effect
			to BID fractionation. Designated as Class II since neurologic decline was a
			secondary endpoint

Le Péchoux et	Study description	II	Results
al ⁴⁴ (2011)	Secondary endpoint of international		Proportion of patients with abnormal QoL-cognitive functioning (scale <75)
	multi-institutional phase III RCT		at baseline ($N = 667$ with baseline data available)
	for SCLC histology.		G1: 23%
			G2: 25%
	Testing different PCI RT schedules		Proportion of patients with abnormal QoL-cognitive functioning (scale <75)
	for patients with limited SCLC in		<i>at 24-months</i> (n = 140)
	complete remission after induction		G1: 41%
	therapy		G2: 46%
	Treatment regimens		Proportion of patients with abnormal LENT-SOMA intellectual functioning at
	G1: 25 Gy in 10 fractions $(n = 360)$		24-months (n = 144)
	G2: 36 Gy in 18 daily fractions or		G1: 20%
	24 fractions of 1.5 Gy BID ($n =$		G2: 28%
	360)		G1 and G2 showed a similar, mild deterioration across time in communication
			deficit, weakness of legs, intellectual deficit and memory. This deterioration
			over time was statistically significant ($p < 0.005$).
			Author's conclusion:
			Patients should be informed of the potential neurologic and neurocognitive
			deficits, as well as the benefit of PCI on survival and the incidence of brain
			metastases. 25 Gy remains the standard of care for PCI for limited SCLC.
			Comments and conclusions
			Large RCT in cooperative group using validated OOL tools. Designated as
			class II since neurologic decline was a secondary endpoint.

Sun et al ⁴⁵	Study description	III	Results
(2011)	Secondary endpoint of US multi-		Baseline neurocognitive results not reported.
	institutional phase III RCT in		Baseline used for per patient measurement of decline
	NSCLC histology		Proportion with significant deterioration in HVLT-IR at 1 year $(n = 90)$
			Control: 7% PCI: 26% (adjusted $p = 0.03$)
	PCI vs no PCI for patients with		Proportion with significant deterioration in HVLT-DR at 1 year $(n = 90)$
	stage IIIA/B NSCLC without		Control: 5% PCI: 32% (adjusted $p = 0.008$)
	disease progression after definitive		Proportion with deterioration in MMSE score as defined by reliable change
	therapy.		index $(n = 95)$
			Control: 18% PCI: 23% ($p = NS$)
	Treatment regimens		Authors conclusion
	No PCI (n= 163)		No significant differences in global cognitive function (MMSE) or QOL after
	PCI 30 Gy in 15 fractions $(n = 177)$		PCI, but there was a significant decline in memory (HVLT) at 1 year.
	Accrual was 340 eligible patients		Comments and conclusions
	out of planned 1058 (trial closed		This was designated as class III given that it closed with only approximately
	early due to poor accrual)		one third of planned accrual, perhaps accounting for the lack of significant
			differences

Slotman et al ⁴⁶	Study description	II	Results
(2009)	Secondary endpoint of European		Proportion with worsened global health status (≥ 20 -point decline) at 3
	multi-institutional phase III RCT		<i>months</i> $(n = 188)$
	SCLC histology, extensive stage		PCI: 34.7%
	with response to induction therapy		No PCI: 22.2% ($p = NS$)
	Treatment regimen		Proportion with worsened cognitive functioning (≥ 20 -point decline) at 3
	PCI (n = 143)		<i>months</i> $(n = 188)$
	No PCI (n = 143)		PCI: 22.4%
	Most common PCI dose		No PCI: $10\% (p = NS)$
	fractionation regimens:		Mean difference in cognitive functioning score at 3 months between arms (No
	20 Gy in 5 fractions (62%)		PCI – PCI) of 8.8 points (below significance definition of ≥ 10 points)
	30 Gy in 10 fractions (16%)		Authors conclusions:
	30 Gy in 12 fractions (6%)		PCI should be offered to all responding ED SCLC patients. Patients should be
	25 Gy in 10 fractions (5%)		informed of the potential adverse effects from PCI.
	HRQOL measured with EORTC		
	Quality of Life Questionnaire C30		Comments and conclusions
	(EORTC-QLQ-C30) and EORTC		The largest mean difference between the 2 arms was observed for fatigue and
	QLQ Brain Cancer Module		hair loss. The impact of PCI on global health status as well as on
	(EORTC-QLQ-BN20)		neurocognitive functioning scores was more limited. Designated as Class II
	268 of 286 with baseline scores		since change in cognitive function was a secondary endpoint.
	available		

Gregor et al ⁴⁷	Study description	III	Results
(1997)	Secondary endpoint of UKCCCR		No significant difference on multiple neurocognitive tests between PCI and No
	and EORTC multi-institutional		PCI at 6-months and 1-year. Cognitive impairment on study entry was seen on
	phase III RCT of SCLC histology.		study entry in up to 42% of patients
	Included patients without brain		Authors conclusion:
	metastases with complete remission		In both groups, there was similar degree of impairment of cognitive function
	after induction therapy		and QOL before PCI. No difference in neurocognitive detriment between PCI
	Treatment regimen		and control in this patient population without brain metastases
	PCI (n = 120)		Comments and conclusions:
	No PCI (n = 194)		Used simple proportions to compare cognitive decline at each time point.
	Most common PCI regimens were		Designated as class III since patient numbers were relatively small at all time
	30 Gy in 10 fractions, 24 Gy in 12		points, and neurocognitive testing was only available on 40% of patients at
	fractions, and 36 Gy in 18 fractions.		baseline
	Initially 1:1 randomization to		
	PCI:No PCI, then revised to 3:2		
	(PCI:No PCI)		
	Neurocognitive portion of trial was		
	optional.		
	125 of 314 patients (40%) with		
	baseline neurocognitive testing		
	available.		
	59 of 314 patients (19%) with 6-		
	month testing results available		

Arriagada et	Study description	II	Results
al ⁴⁸ (1995)	Primary endpoint of multi-		41% of all patients did not have neurocognitive abnormalities at baseline
	institutional French phase III RCT		Number of patients free from any abnormalities at baseline:
	SCLC histology		PCI: 50
	Included patients with SCLC,		No PCI: 44
	without brain metastases, with		2-year cumulative incidence of negative change in cognitive "higher
	complete remission after induction		<i>functions</i> " 36% (control) vs 30% (PCI), $p = NS$
	therapy.		PCI 30%
	Treatment regimen		No PCI 36%, <i>p</i> = NS
	PCI		Authors conclusion
	No PCI		Prophylactic cranial irradiation given to patients with small cell lung cancer in
	PCI was 24 Gy in 8 fractions		complete remission decreases the risk of brain metastasis threefold without a
	Neuropsychologic assessments		significant increase in complications. No difference in neurocognitive
	performed by neurologists, $N = 294$		detriment between PCI and control in this patient population without brain
			metastases
			Comments and conclusions
			Used cumulative incidence for cognitive dysfunction endpoint. Designated as
			class II since "higher functions" were not defined, in addition to the lack of
			definition of criteria used to define decline

664 BID, twice daily; COWAT, Controlled Oral Word Association Test; EORTC, European Organisation for Research and Treatment of 665 Cancer; HRQOL, health-related quality of life; HVLT, Hopkins Verbal Learning Test; KPS, Karnofsky Performance Scale; MMSE,

666 Mini-Mental State Examination; ND, neurocognitive decline; NS, not significant; PCI, prophylactic cranial irradiation; QOL, quality

of life; RCT, randomized controlled trial; SCLC, small cell lung cancer; TMT, Trail Making Test.

Table 5. Neurocognitive outcomes of whole brain radiation therapy and local therapy versus local therapy only

Author and	Description of Study	Data Class	Conclusions
Year			
Soffietti et al ⁵¹	Study description	II	Results
(2013)	Secondary endpoint of European multi-		EORTC QLQ C30 cognitive functioning score mean difference at 12
	institutional phase III RCT		months
	Patient population		Local vs local + WBRT mean difference = -10.8 points ($p < 0.05$)
	Patients with 1-3 brain metastases		Mean EORTC QLQ C30 cognitive functioning score at 12 months
	Treatment regimen		Local: 80.4
	Local only: local therapy alone with SRS or		Local + WBRT: $69.7 (p = 0.05)$
	surgery $(n = 179)$		Authors conclusions
	Local + WBRT (n = 180)		Adjuvant WBRT after surgery or SRS of a limited number of brain
	Local therapy either SRS $(n = 199)$ or		metastases may negatively impact some aspects of HRQOL, including
	surgery $(n = 160)$		self-reported cognitive functioning.
	HRQOL measured with the EORTC Quality		Comments and conclusions
	of Life Questionnaire C30 and the EORTC		Overall, patients treated with surgery or SRS only reported better
	QLQ Brain Cancer Module		HRQOL scores than did patients who also received WBRT. Most
	N = 341 with baseline HRQOL data		scores, which differed significantly during the first time points, had a
			tendency to recover. The positive effect of WBRT in decreasing the
			rate of intracranial progression and modestly improving the
			progression-free survival did not translate into an advantage in terms
			of HRQOL. Designated as class II since cognitive functioning was a
			secondary endpoint.

Chang et al ⁵⁰	Study description	Ι	Results
(2009)	Primary endpoint of single institutional		HTLV-R significant deterioration rates at 4 months
	phase III RCT		Total recall:
	Patient population		SRS: 24%
	Patients with 1-3 brain metastases		SRS + WBRT: 52%
	Treatment regimen		Delayed recall:
	SRS alone $(n = 30)$		SRS: 6%
	SRS + WBRT (n = 28)		SRS + WBRT: 22%
	WBRT dose: 30 Gy in 12 fractions		Delayed recognition:
	Primary endpoint: significant deterioration		SRS: 0%
	of HTLV-R total recall at 4 months defined		SRS + WBRT: 11%
	as \geq 5 points drop from baseline.		Authors conclusions
	Bayesian analysis		Patients treated with SRS + WBRT were at a greater risk of a
	Trial enrollment stopped after 58 patients		significant decline in learning and memory function by 4 months
	enrolled due to significant differences.		compared with the group that received SRS alone
			Comments and conclusions
			Significantly longer overall survival in patients treated with SRS alone
			as compared to SRS + WBRT. Given that this is a finding not found in
			other studies, thought to possibly be indicative of more favorable
			prognostic factors in SRS alone group

Aoyama et	Study description	II	Results
al ⁴⁹ (2007)	Secondary endpoint of Japanese multi-		Average baseline MMSE did not differ significantly between
	institutional phase III RCT		treatment groups ($p = 0.47$).
	Patients with 1-4 brain metastases		Median MMSE score at 12 months
	Treatment regimen		SRS alone: 28
	SRS alone $(n = 67)$		SRS+WBRT: 27
	SRS + WBRT (n = 65)		Actuarial rate of MMSE preservation (decline < 3 points) at 12
	WBRT dose: 30 Gy in 10 fractions		months
	Neurocognition measured with MMSE.		SRS alone: 59.3%
	110 of 132 randomized patients (83%) had		SRS+WBRT: 76.1% ($p = NS$)
	baseline MMSE scores available.		Actuarial rate of MMSE preservation (decline < 3 points) at 24
			months
			SRS alone: 51.9%
			SRS+WBRT: 68.5% ($p = NS$)
			Average duration until MMSE deterioration
			SRS alone: 7.6 months
			SRS+WBRT: 16.5 months ($p = 0.05$)
			Authors conclusion
			Intracranial control is the most important factor for stabilizing
			neurocognitive function. Addition of WBRT stabilized neurocognition
			in the intermediate term due to improved intracranial control, however
			WBRT may be associated with long-term adverse effects on
			neurocognition.
			Comments and conclusions
			Designated as class II since MMSE is a relatively insensitive measure
			of neurocognition and may miss more subtle changes.

Table 6. Effect of pharmacologic agents or whole brain radiation therapy techniques on neurocognitive decline

Author and	Description of Study	Data	Conclusions
Year		Class	
Rapp et al ⁵³	Study description	II	Results
(2015)	Primary endpoint of multi-institutional phase		24 week results:
	III RCT of donepezil versus placebo.		Patients in both groups showed improved cognitive function at 24
			weeks, but there was no difference in overall cognitive composite score
	Patient eligibility		between arms $(p = 0.48)$
	Patients with either primary or secondary		No significant differences between groups except for memory
	brain tumors receiving partial brain (60%) or		recognition ($p = 0.027$), memory discrimination ($p = 0.007$), and motor
	WBRT (40%) of at least 30 Gy \geq 6 months		speed and dexterity ($p = 0.016$)
	before enrollment.		The benefits of donepezil greater for those who were more cognitively
	27% metastatic brain tumors		impaired at baseline.
	7% PCI		Author's conclusions:
	66% primary brain tumors		Treatment with donepezil did not significantly improve the overall
	Treatment regimens		composite score, but it did result in modest improvements in several
	Donepezil: $n = 99$		cognitive functions, especially among patients with greater pretreatment
	Placebo: $n = 99$		impairments.
	Donepezil single daily 5-mg dose for 6		Comments and conclusions:
	weeks, which was escalated to 10 mg per day		Assigned class II since only 40% of patients received WBRT. Donepezil
	for 18 weeks if well tolerated.		only started 6 months after radiation therapy, providing a source of bias.
	Primary endpoint: overall cognitive		
	performance after 24 weeks of therapy		

Brown et al ⁵⁶	Study description	Ι	Results
(2013)	Primary endpoint of North American multi-		Median decline in HVLT-R delayed recall at 24 weeks
	institutional phase III RCT. Primary endpoint		WBRT + memantine: 0
	was decline in HVLT-R delayed recall at 24		WBRT + placebo: $-0.9 (p = 0.059, NS)$
	weeks.		Probability of cognitive failure at 24 weeks:
			WBRT + Memantine: 53.8%
			WBRT + placebo: 64.9% (<i>p</i> = 0.01)
	Patient eligibility		Authors' conclusions
	Patients with brain metastases (number not		Memantine well tolerated. Although memantine was associated with less
	limited)		decline in the primary endpoint of delayed recall at 24 weeks, this lacked
	Treatment regimens		statistical significance possibly due to significant patient loss. Overall,
	WBRT + memantine: $n = 278$		patients treated with memantine had better cognitive function over time;
	WBRT + placebo: n=276		specifically, memantine delayed time to cognitive decline and reduced
	WBRT 37.5 Gy in 15 fractions		the rate of decline in memory, executive function, and processing speed
	Memantine dosing, starting before or during		in patients receiving WBRT.
	WBRT:		
	Week 1 5 mg qAM		
	Week 2 5 mg BID		
	Week 3 10mg qAM / 5 mg qPM		
	Week 4-24 10 mg BID		
	N = 473 with baseline scores available		
	Only 149 (53%) of 280 alive patients at 24		
	weeks had neurocognitive assessments and		
	were analyzable.		

Gondi et al ⁵⁴	Study description	II	Results:
(2014)	Primary endpoint of multi-institutional North		42 patients analyzable for primary endpoint at 4 months (71% of alive
	American phase II single arm trial of		patients)
	hippocampal avoidance (HA). Results		Mean relative HVLT-R DR decline between baseline and 4 months
	compared with historical control of control		HA: 7%
	arm of previous phase III RCT. Primary		Historical controls: 30% (p = 0.0003)
	endpoint was decline in HVLT-R delayed		Probability of HVLT-R total recall significant deterioration by 4 months
	recall (DR) at 4 months as compared with		HA: 19%
	standard arm of PCI-P-120-9801 phase III		Probability of HVLT-R DR significant deterioration by 4 months
	trial using WBRT 30 Gy in 10 fractions		HA: 33%
	without HA.		Intracranial progression within HA region
			5% of patients with intracranial progression
	Patient eligibility		3% of patients overall
	Patients with brain metastases outside a 5-		Authors conclusions
	mm margin around either hippocampus.		Conformal avoidance of the hippocampus during WBRT is associated
			with preservation of memory and QOL as compared with historical
	Treatment regiment		series.
	Patients treated with HA (n=113) during		Comments and Conclusions
	WBRT to 30 Gy in 10 fractions.		Designated as Class II since it was a Phase II study.
	Hippocampal D100 goal <9 Gy and max		
	point dose goal <16 Gy		
	100 patients with baseline scores available.		
	42 patients with scores analyzable at 4		
	months.		

Butler et al ⁵⁵	Study description	II	Results
(2007)	Secondary endpoint of multi-institutional		Fatigue:
	phase III RCT of d-threo-methylphenidate		No difference in fatigue assessment at any time point up to 8 weeks
	HCl (d-MPH) versus placebo. Primary		post-RT between arms.
	endpoint was fatigue subscale of the FACIT-		Baseline MMSE score
	F.		RT + d-MPH: 27.2
	Patient eligibility		RT + placebo: 26.5 (p = NS)
	Patients with either primary brain tumors (n		MMSE 8 weeks post-RT
	= 33) or brain metastases (n = 35) receiving		RT + d-MPH: 23.3
	partial brain RT or WBRT ≥25 Gy		RT + placebo: 25.6 (p = NS)
	Treatment regimens		Authors conclusions
	RT + d-MPH: n = 34		Prophylactic use of d-MPH in brain tumor patients undergoing RT did
	RT + placebo: n = 34		not result in an improvement in QOL.
	d-MPH or placebo started by day 5 of RT.		
	Starting dose of d-MPH was 5 mg BID and		Comments and conclusions
	was escalated by 5 mg BID to a maximum of		Designated as Class II due to low patient accrual and reduced statistical
	15 mg BID.		power. Only a small number of patients receiving WBRT.
	Study drug continued for 8 weeks post-RT.		
	QOL measured with FACT-Brain and		
	FACIT-F and cognition measured with		
	MMSE.		
	Trial closed after accrual of 68 of planned		
	162 patients due to slow accrual and		
	withdrawal of financial support.		

Table 7. Intracranial progression-free survival and overall survival following local therapy (surgery or stereotactic radiosurgery) alone or local
 therapy with whole brain radiation therapy

Author	Description of Study	Data	Conclusions
(Year)		Class	
Kocher et al ²⁸	Study description	II	Results
(2011)	RCT comparing WBRT to observation		Survival with functional independence (time to WHO PS>2)
	after SRS or surgical resection on		Observation: 10 months
	duration of functional independence		WBRT: 9.5 months
	(WHO performance status)		(HR = 0.96, p = 0.71)
	Patient population		At 2 years, 22.3% and 22.6% were alive and independent in the observation
	359 patients with 1-3 brain metastases		and WBRT arms, respectively.
	with WHO performance status ≤ 2 who		Progression-free survival
	had previously undergone either surgical		Observation: 3.4 months
	resection or SRS prior to randomized		WBRT: 4.6 months
	intervention		(p = 0.020)
	Treatment regimen		Overall survival
	SRS + observation (n = 100)		Observation: 10.9 months
	SRS + WBRT (n = 99)		WBRT: 10.7 months
	Surgery + observation $(n = 79)$		(HR = 0.98, p = 0.89)
	Surgery + WBRT $(n = 81)$		Author's conclusions
	Local therapy + WBRT arm (180 total)		After surgery or SRS, WBRT reduces the probability of intracranial relapses
	Local therapy + Observation (179 total)		from 80% to 50%, and is most pronounced after surgery. This is translated
			into a modest PFS, but no improvement in OS. There was no difference in
	WBRT 30 Gy in 10 fractions		functional independence between the 2 groups.
			Comments and conclusions
			In well-performing patients with otherwise stable systemic disease and 1-
			3metastases, who are initially treated with either radiosurgery or surgery,
			WBRT can be withheld if serial imaging for follow-up is performed.
			Regarding the patients undergoing resection of a single lesion, because
			adjuvant irradiation substantially reduces the risk of recurrence in the tumor
			bed, postoperative local irradiation should be an option that is investigated.
			Designated class II since the primary endpoint was functional independence,
			not PFS or OS.

Aoyama et al ⁵⁹	Study description	III	Results
(2006)	RCT comparing patients with 1-4 brain		Survival (median and 1-year actuarial survival rate)
	metastases receiving either WBRT +		WBRT + SRS: 7.5 months and 38.5%
	SRS or SRS alone on overall survival,		SRS alone: 8.0 months and 28.4%
	recurrence, function, and cause of death.		(p = 0.42)
	Study closed early due to poor accrual.		Intracranial recurrence rate at 12 months
	Patient population		WBRT + SRS: 46.8%
	132 patients with 1-4 brain metastases		SRS alone: 76.4%
	(each <3 cm in diameter).		(<i>p</i> < 0.001)
	No surgical resection performed prior to		Salvage intracranial treatment
	treatment.		WBRT + SRS: 10 patients
	Treatment regimen		SRS alone: 29 patients
	WBRT + SRS $(n = 65)$		(<i>p</i> < 0.001)
	SRS alone $(n = 67)$		Cause of death: Neurological causes
	WBRT 30 Gy in 10 fractions		WBRT + SRS: 22.8%
			SRS alone: 19.3%
			(p = 0.64)
			Author's conclusions
			Compared to SRS alone, the use of WBRT + SRS did not improve survival
			for patients in this trial, but intracranial relapse occurred more frequently in
			those not receiving WBRT.
			Comments and conclusions
			Between both groups, there was no difference in OS, but higher rates of
			recurrence in the SRS only group lead to the more frequent need for salvage
			treatment. Assigned class III due to early closure of study due to poor
			accrual, resulting in lack of statistical power

Patchell et al ⁵⁸	Study description	Ι	Results
(1998)	RCT comparing patients with single		Tumor recurrence
	brain metastases who underwent surgical		Surgery + WBRT: 18%
	resection followed by postoperative		surgery + observation: 70%
	WBRT vs observation on tumor		(<i>p</i> < 0.001)
	recurrence and survival.		WBRT prevented recurrence at the site of original metastases (10% vs. 46%,
	Patient population		p < 0.001) as well as other sites (14% vs. 37%, $p < 0.01$) vs. observation,
	95 patients with single metastases to the		respectively.
	brain treated with complete surgical		Death from neurological causes
	resection		Surgery + WBRT: 14%
	Treatment regimen		surgery + observation: 44%
	Surgery + WBRT $(n = 49)$		(p = 0.003)
	surgery + observation $(n = 46)$		Overall survival
	WBRT 50.4 Gy in 28 fractions		Surgery + WBRT: 48 weeks
	Primary end point: intracranial		surgery + observation: 43 weeks
	recurrence		(p = 0.39)
	Secondary end points: Overall survival,		Author's conclusions
	cause of death, and preservation of		Postoperative WBRT after complete surgical resection of a single metastasis
	ability to function independently		results in better control of disease in the brain and a reduction in the number
			of deaths due to neurological causes.Due to the decreased death due to
			neurologic causes, the authors recommended routine postoperative WBRT.
			Comments and conclusions
			Despite the reduction in brain recurrence rates and neurologic deaths,
			postoperative WBRT did not result in an increased survival or improvement
			in the length of time patients were able to function independently.

681 Gy, Gray; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; SRS, stereotactic radiosurgery; WBRT, whole brain 682 radiation therapy; WHO, World Health Organization.

683 **REFERENCES**

- 684
- Gaspar LE, Mehta MP, Patchell RA, et al. The role of whole brain radiation therapy in
 the management of newly diagnosed brain metastases: a systematic review and evidence based clinical practice guideline. *J Neurooncol.* Jan 2010;96(1):17-32.
- Borgelt B, Gelber R, Larson M, Hendrickson F, Griffin T, Roth R. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. *Int J Radiat Oncol Biol Phys.* Dec 1981;7(12):1633-1638.
- 692 3. Chatani M, Matayoshi Y, Masaki N, Inoue T. Radiation therapy for brain metastases
 693 from lung carcinoma. Prospective randomized trial according to the level of lactate
 694 dehydrogenase. *Strahlenther Onkol.* Mar 1994;170(3):155-161.
- Chatani M, Teshima T, Hata K, Inoue T, Suzuki T. Whole brain irradiation for
 metastases from lung carcinoma. A clinical investigation. *Acta Radiol Oncol.* Jul-Aug
 1985;24(4):311-314.
- 5. Davey P, Hoegler D, Ennis M, Smith J. A phase III study of accelerated versus
 conventional hypofractionated whole brain irradiation in patients of good performance
 status with brain metastases not suitable for surgical excision. *Radiother Oncol.* Aug
 2008;88(2):173-176.
- 6. Haie-Meder C, Pellae-Cosset B, Laplanche A, et al. Results of a randomized clinical trial comparing two radiation schedules in the palliative treatment of brain metastases.
 704 *Radiother Oncol.* Feb 1993;26(2):111-116.
- 705
 7. Komarnicky LT, Phillips TL, Martz K, Asbell S, Isaacson S, Urtasun R. A randomized phase III protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916). *Int J Radiat Oncol Biol Phys.* Jan 1991;20(1):53-58.
- Kurtz JM, Gelber R, Brady LW, Carella RJ, Cooper JS. The palliation of brain
 metastases in a favorable patient population: a randomized clinical trial by the Radiation
 Therapy Oncology Group. *Int J Radiat Oncol Biol Phys.* Jul 1981;7(7):891-895.
- 9. Murray KJ, Scott C, Greenberg HM, et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the Radiation Therapy Oncology Group (RTOG) 9104. *Int J Radiat Oncol Biol Phys.*715 Oct 1 1997;39(3):571-574.
- Priestman TJ, Dunn J, Brada M, Rampling R, Baker PG. Final results of the Royal
 College of Radiologists' trial comparing two different radiotherapy schedules in the
 treatment of cerebral metastases. *Clin Oncol (R Coll Radiol)*. 1996;8(5):308-315.
- 71911.Sause WT, Scott C, Krisch R, et al. Phase I/II trial of accelerated fractionation in brain
metastases RTOG 85-28. Int J Radiat Oncol Biol Phys. Jul 15 1993;26(4):653-657.
- Bach F, Sorensen JB, Adrian L, et al. Brain relapses in chemotherapy-treated small cell lung cancer: a retrospective review of two time-dose regimens of therapeutic brain irradiation. *Lung Cancer*. Sep 1996;15(2):171-181.
- 13. Conill C, Jorcano S, Domingo-Domenech J, et al. Whole brain irradiation and
 temozolomide based chemotherapy in melanoma brain metastases. *Clin Transl Oncol.*Apr 2006;8(4):266-270.

727	14.	Nieder C, Berberich W, Nestle U, Niewald M, Walter K, Schnabel K. Relation between
728		local result and total dose of radiotherapy for brain metastases. Int J Radiat Oncol Biol
729		<i>Phys.</i> Sep 30 1995;33(2):349-355.
730	15.	Rades D, Schild SE, Lohynska R, Veninga T, Stalpers LJ, Dunst J. Two radiation
731		regimens and prognostic factors for brain metastases in nonsmall cell lung cancer
732		patients. Cancer. Sep 1 2007;110(5):1077-1082.
733	16.	Rades D, Haatanen T, Schild SE, Dunst J. Dose escalation beyond 30 grays in 10
734		fractions for patients with multiple brain metastases. <i>Cancer</i> . Sep 15 2007;110(6):1345-
735		1350.
736	17.	Rades D, Bohlen G, Dunst J, et al. Comparison of short-course versus long-course whole-
737		brain radiotherapy in the treatment of brain metastases. Strahlenther Onkol. Jan
738		2008;184(1):30-35.
739	18.	Nieder C, Nestle U, Niewald M, Schnabel K. Accelerated radiotherapy for brain
740		metastases. Radiother Oncol. Oct 1997;45(1):17-22.
741	19.	Graham PH, Bucci J, Browne L. Randomized comparison of whole brain radiotherapy,
742		20 Gy in four daily fractions versus 40 Gy in 20 twice-daily fractions, for brain
743		metastases. Int J Radiat Oncol Biol Phys. Jul 1 2010;77(3):648-654.
744	20.	Saha A GS, Roy C, Kayal P. Treatment outcomes in patients with multiple brain
745	metast	ases: A prospective randomized study Clinical Cancer Investigation Journal.
746		2014;3(4):269-275.
747	21.	Sayed M. Different fractionation in whole brain irradiation for multiple brain metastases
748	Middle	e East Journal of Cancer. 2015;6(2):85-90.
749	22.	Fowler J. Practical time-dose evaluations, or how to stop worrying and learn to love
750		linear quadratics. In: Purdy JA PC, Vijayakumar S, ed. Technical Basis of Radiation
751		Therapy: Practical Clinical Applications. 4 ed: Springer Berlin Heidelberg; 2006:3-31.
752	23.	Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The role of biologically effective
753		dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol). 2001;13(2):71-81.
754	24.	Caravatta L, Deodato F, Ferro M, et al. Results of a phase II study of Short-course
755		Accelerated Radiation Therapy (SHARON) for multiple brain metastases. Am J Clin
756		<i>Oncol.</i> Aug 2015;38(4):395-400.
757	25.	Rodrigues G, Yartsev S, Tay KY, Pond GR, Lagerwaard F, Bauman G. A phase II multi-
758		institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain
759		metastases. Radiation oncology (London, England). 2012;7:42.
760	26.	Levegrun S, Pottgen C, Wittig A, Lubcke W, Abu Jawad J, Stuschke M. Helical
761		tomotherapy for whole-brain irradiation with integrated boost to multiple brain
762		metastases: evaluation of dose distribution characteristics and comparison with
763		alternative techniques. Int J Radiat Oncol Biol Phys. Jul 15 2013;86(4):734-742.
764	27.	Lee DS, Kim YS, Lee CG, et al. Early volumetric change and treatment outcome of
765		metastatic brain tumors after external beam radiotherapy: differential radiotherapy for
766		brain metastasis. Clin Transl Oncol. Nov 2013;15(11):889-896.
767	28.	Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus
768		observation after radiosurgery or surgical resection of one to three cerebral metastases:
769		results of the EORTC 22952-26001 study. J Clin Oncol. Jan 10 2011;29(2):134-141.

770	29.	Sundstrom JT, Minn H, Lertola KK, Nordman E. Prognosis of patients treated for
771		intracranial metastases with whole-brain irradiation. Ann Med. Jun 1998;30(3):296-299.
772	30.	Lee HL, Chung TS, Ting LL, et al. EGFR mutations are associated with favorable
773		intracranial response and progression-free survival following brain irradiation in non-
774		small cell lung cancer patients with brain metastases. Radiation oncology (London,
775		England). Oct 30 2012;7:181.
776	31.	Gow CH, Chien CR, Chang YL, et al. Radiotherapy in lung adenocarcinoma with brain
777		metastases: effects of activating epidermal growth factor receptor mutations on clinical
778		response. Clin Cancer Res. Jan 1 2008;14(1):162-168.
779	32.	Wolstenholme V, Hawkins M, Ashley S, Tait D, Ross G. HER2 significance and
780		treatment outcomes after radiotherapy for brain metastases in breast cancer patients.
781		Breast. Dec 2008;17(6):661-665.
782	33.	Borgelt B, Gelber R, Kramer S, et al. The palliation of brain metastases: final results of
783		the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol
784		<i>Phys.</i> Jan 1980;6(1):1-9.
785	34.	Sperduto PW, Kased N, Roberge D, et al. Effect of tumor subtype on survival and the
786		graded prognostic assessment for patients with breast cancer and brain metastases. Int J
787		Radiat Oncol Biol Phys. Apr 1 2012;82(5):2111-2117.
788	35.	Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or
789		without stereotactic radiosurgery boost for patients with one to three brain metastases:
790		phase III results of the RTOG 9508 randomised trial. Lancet. May 22
791		2004;363(9422):1665-1672.
792	36.	Solomon BJ, Cappuzzo F, Felip E, et al. Intracranial Efficacy of Crizotinib Versus
793		Chemotherapy in Patients With Advanced ALK-Positive Non-Small-Cell Lung Cancer:
794		Results From PROFILE 1014. <i>J Clin Oncol</i> . Aug 20 2016;34(24):2858-2865.
795	37.	Schuler M, Wu YL, Hirsh V, et al. First-Line Afatinib versus Chemotherapy in Patients
796		with Non-Small Cell Lung Cancer and Common Epidermal Growth Factor Receptor
797	•••	Gene Mutations and Brain Metastases. J Thorac Oncol. Mar 2016;11(3):380-390.
798	38.	luchi T, Shingyoji M, Sakaida T, et al. Phase II trial of gefitinib alone without radiation
799		therapy for Japanese patients with brain metastases from EGFR-mutant lung
800	20	adenocarcinoma. <i>Lung Cancer</i> . Nov 2013;82(2):282-287.
801	39.	Selek U, Chang EL, Hassenbusch SJ, 3rd, et al. Stereotactic radiosurgical treatment in
802		103 patients for 153 cerebral melanoma metastases. Int J Radiat Oncol Biol Phys. Jul 15
803	40	2004;59(4):1097-1106.
804	40.	Liew DN, Kano H, Kondziolka D, et al. Outcome predictors of Gamma Knife surgery for
805		melanoma brain metastases. Clinical article. <i>Journal of neurosurgery</i> . Mar
806	41	2011;114(3):769-779.
807	41.	Mori Y, Kondziolka D, Flickinger JC, Kirkwood JM, Agarwala S, Lunsford LD.
808		Stereotactic radiosurgery for cerebral metastatic melanoma: factors affecting local
809	42	disease control and survival. Int J Kadiat Uncol Biol Phys. Oct 1 1998;42(3):581-589.
810	42.	rogarty GB, Hong A, Dolven-Jacobsen K, et al. First interim analysis of a randomised
811		trial of whole brain radiotherapy in melanoma brain metastases confirms high data $M_{\rm eff} = M_{\rm eff} = 0.015 \pm 0.102$
812		quality. BMC Res Notes. May 08 2015;8:192.

813	43.	Wolfson AH, Bae K, Komaki R, et al. Primary analysis of a phase II randomized trial
814		Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and
815		schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life
816		for patients with limited-disease small-cell lung cancer. Int J Radiat Oncol Biol Phys. Sep
817		1 2011;81(1):77-84.
818	44.	Le Pechoux C, Laplanche A, Faivre-Finn C, et al. Clinical neurological outcome and
819		quality of life among patients with limited small-cell cancer treated with two different
820		doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01,
821		EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Ann Oncol. May 2011:22(5):1154-
822		1163.
823	45.	Sun A, Bae K, Gore EM, et al. Phase III trial of prophylactic cranial irradiation compared
824		with observation in patients with locally advanced non-small-cell lung cancer:
825		neurocognitive and quality-of-life analysis. J Clin Oncol. Jan 20 2011;29(3):279-286.
826	46.	Slotman BJ, Mauer ME, Bottomley A, et al. Prophylactic cranial irradiation in extensive
827		disease small-cell lung cancer: short-term health-related quality of life and patient
828		reported symptoms: results of an international Phase III randomized controlled trial by
829		the EORTC Radiation Oncology and Lung Cancer Groups. J Clin Oncol. Jan 1
830		2009;27(1):78-84.
831	47.	Gregor A, Cull A, Stephens RJ, et al. Prophylactic cranial irradiation is indicated
832		following complete response to induction therapy in small cell lung cancer: results of a
833		multicentre randomised trial. United Kingdom Coordinating Committee for Cancer
834		Research (UKCCCR) and the European Organization for Research and Treatment of
835		Cancer (EORTC). Eur J Cancer. Oct 1997;33(11):1752-1758.
836	48.	Arriagada R, Le Chevalier T, Borie F, et al. Prophylactic cranial irradiation for patients
837		with small-cell lung cancer in complete remission. J Natl Cancer Inst. Feb 1
838		1995;87(3):183-190.
839	49.	Aoyama H, Tago M, Kato N, et al. Neurocognitive function of patients with brain
840		metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or
841		radiosurgery alone. Int J Radiat Oncol Biol Phys. Aug 1 2007;68(5):1388-1395.
842	50.	Chang EL, Wefel JS, Hess KR, et al. Neurocognition in patients with brain metastases
843		treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised
844		controlled trial. The Lancet. Oncology. Nov 2009;10(11):1037-1044.
845	51.	Soffietti R, Kocher M, Abacioglu UM, et al. A European Organisation for Research and
846		Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus
847		observation in patients with one to three brain metastases from solid tumors after surgical
848		resection or radiosurgery: quality-of-life results. J Clin Oncol. Jan 1 2013;31(1):65-72.
849	52.	Brown PD, Jaeckle K, Ballman KV, et al. Effect of Radiosurgery Alone vs Radiosurgery
850		With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3
851		Brain Metastases: A Randomized Clinical Trial. Jama. Jul 26 2016;316(4):401-409.
852	53.	Rapp SR, Case LD, Peiffer A, et al. Donepezil for Irradiated Brain Tumor Survivors: A
853		Phase III Randomized Placebo-Controlled Clinical Trial. J Clin Oncol. May 20
854		2015;33(15):1653-1659.
855	54.	Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance
856		of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for

857		brain metastases (RTOG 0933): a phase II multi-institutional trial. <i>J Clin Oncol</i> . Dec 1
858	55	2014;52(54):5810-5810.
859 860	33 .	prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor
861		patients receiving radiation therapy. Int J Radiat Oncol Biol Phys. Dec 1
862		2007;69(5):1496-1501.
863	56.	Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive
864		dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind,
865		placebo-controlled trial. Neuro Oncol. Oct 2013;15(10):1429-1437.
866	57.	Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients
867		with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation
868		Overview Collaborative Group. N Engl J Med. Aug 12 1999;341(7):476-484.
869	58.	Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of
870		single metastases to the brain: a randomized trial. Jama. Nov 04 1998;280(17):1485-
871		1489.
872	59.	Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation
873		therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized
874		controlled trial. Jama. Jun 7 2006;295(21):2483-2491.
875	60.	Sahgal A, Aoyama H, Kocher M, et al. Phase 3 trials of stereotactic radiosurgery with or
876		without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data
877		meta-analysis. Int J Radiat Oncol Biol Phys. Mar 15 2015;91(4):710-717.
878	61.	Rades D, Hornung D, Veninga T, Schild SE, Gliemroth J. Single brain metastasis:
879		radiosurgery alone compared with radiosurgery plus up-front whole-brain radiotherapy.
880		Cancer. Jun 1 2012;118(11):2980-2985.
881	62.	McPherson CM, Suki D, Feiz-Erfan I, et al. Adjuvant whole-brain radiation therapy after
882		surgical resection of single brain metastases. <i>Neuro Oncol.</i> Jul 2010;12(7):711-719.
883	63.	Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with
884		multiple brain metastases (JLGK0901): a multi-institutional prospective observational
885		study. Lancet Oncol. Apr 2014;15(4):387-395.
886	64.	Chang WS, Kim HY, Chang JW, Park YG, Chang JH. Analysis of radiosurgical results in
887		patients with brain metastases according to the number of brain lesions: is stereotactic
888		radiosurgery effective for multiple brain metastases? Journal of neurosurgery. Dec
889		2010;113 Suppl:73-78.
890	65.	Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD. Stereotactic radiosurgery for
891		four or more intracranial metastases. Int J Radiat Oncol Biol Phys. Mar 1
892		2006;64(3):898-903.
893	66.	Gaspar L, Scott C, Rotman M, et al. Recursive partitioning analysis (RPA) of prognostic
894		factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J
895		Radiat Oncol Biol Phys. Mar 1 1997;37(4):745-751.
896	67.	Banfill KE, Bownes PJ, St Clair SE, Loughrey C, Hatfield P. Stereotactic radiosurgery
897		for the treatment of brain metastases: impact of cerebral disease burden on survival.
898		British journal of neurosurgery. Oct 2012;26(5):674-678.
899	68.	Mulvenna P, Nankivell M, Barton R, et al. Dexamethasone and supportive care with or
900		without whole brain radiotherapy in treating patients with non-small cell lung cancer with

- 901brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results902from a phase 3, non-inferiority, randomised trial. *Lancet.* Oct 22 2016;388(10055):2004-9032014.